CCA Conference: U.S. Regional Carriers Deploying 5G, actively looking at Fixed Wireless+ CTIA on 5G

Competitive Carriers Association (CCA) conference :

Small and regional carriers are taking different approaches to 5G and fixed wireless, said Eric Boudriau, Ericsson North America head-customer unit regional carriers, at the Competitive Carriers Association (CCA) [1.] conference on September 28th in Portland, OR. “Everybody starts from a different position,” he said. Fixed wireless is “really, really accelerating” in the U.S. and internationally, he said. Other executives stressed the importance of addressing federal infrastructure rules to better fund wireless.  The discussion was streamed live from Portland, Oregon.

Note 1. CCA was founded in 1992 by nine rural and regional wireless carriers as a carrier centric organization. Since its founding, CCA has grown to become the nation’s leading association for competitive wireless providers serving all areas of the United States.

Alaska’s GCI deployed 5G in its first market in the spring of 2020, in the middle of the COVID-19 pandemic, said John Myhre, vice president-wireless technology. “We’ve done very well,” he said. “We are continuing to roll out 5G as we roll through different markets.” GCI hasn’t decided what spectrum bands it will use for a fixed-wireless offering, Myhre said. “As a fixed and mobile provider, we have options,” he said. “It’s making sure that we fit the market and the requirement against the technology, not try to force it.  In Alaska, everything is just really big. Any project that we do is a big project.” GCI is laying fiber to reach the Aleutian Islands, he noted, in a $58 million project requiring more than 800 miles of undersea cable to reach rural markets.

“We are actively looking at fixed (wireless),” with trials to start in the next 18 months, he said. Wisconsin-based Cellcom launched 5G in February, said CEO Brighid Riordan. The carrier is deploying some fixed wireless using 4G and citizens broadband radio service spectrum and has found the roll out challenging, she said. “We love our trees in Wisconsin, we love the lakes,” she said. “When there’s a valley, when there are trees, it provides a challenge,” she said. Small carriers need government funding to reach some markets, Riordan said. “If it were easy to provide broadband to every rural person in America, it would already be done,” she said: “There’s not necessarily a business case for these very rural customers.”

UScellular is still deploying 5G, market-by-market, said Rebecca Thompson, vice president-government affairs. The carrier started with high-band, she said. “As we get access to some more of our mid-band spectrum we’ll have a much more robust 5G product in the future,” she said. When the provider will get some of its licenses remains to be determined. “There’s some clearing and coordination … and we will still have to actually get the licenses for some of that spectrum,” she said. Mid-band “has proven to really help with geographic reach in a cost effective way” and “is really critical to deploy in rural areas,”  The “good news” is fixed wireless is “mature — it’s ready, it’s reliable, it’s offering speeds that people want at home,” Thompson said. It shouldn’t be a foregone conclusion” that the NTIA’s broadband, equity, access and deployment program won’t fund fixed wireless, she added.

UScellular wants to see “less of the thumb on the scale” favoring fiber, she said. Federal funds so far are biased toward fiber and the wireless industry has to fight for more neutral rules for making awards, Boudriau said. Fixed wireless may see the most deployment “where the government isn’t involved,” Myhre said: “We have areas where we may not get funding, but we still have a need.”

References:

https://www.cca-convention.org/

https://www.ccamobile.org/about-cca#AboutUs

…………………………………………………………………………………………………………………………………………………………………………………………………..

CTIA at MWC-Las Vegas:

CTIA President Meredith Baker said Wednesday at the start of the Mobile World Congress in Las Vegas. “We’re here to talk about what 5G is,” she said: “5G is innovation. 5G is competition, and most importantly, 5G is here.”

Baker said the wireless industry needs “the right policies” from the government. “Take C band as proof,” she said. “Turning on a portion of that spectrum saw speeds increase up to 50%, and that was 100 MHz. Imagine what 150 or 200 more could do. Well, we shouldn’t have to imagine. … We need more mid-band — licensed mid-band in large contiguous blocks.” The wireless industry also needs Congress to extend the FCC’s auction authority, set to expire Friday, and designate more bands for auction, she said.

Baker also discussed the importance of fixed wireless. “For many Americans, the first 5G killer app is home broadband,” she said. “The fastest growing broadband provider is now a wireless company,” she said. U.S. wireless carriers already offer fixed service to 70 million homes, she noted.

More than 300 million AT&T customers are covered by 5G, all of the company’s major handsets support the new generation of wireless “and we’ve got business models being created,” said David Christopher, executive vice president-business development and strategic alliances. “But it is early days,” he said. Christopher spoke with Recon Analytics’ Roger Entner.

We’re two years in,” Entner responded: “At this point in the 4G period we still thought that sending pictures was the killer app for 4G. We were wrong.” Deploying a new G “is not a 100-meter dash,” he said. “This will take years.”

There’s a very good chance that we don’t know what the killer app for 5G is,” Christopher said. Augmented reality and the massive IoT will  be important. The median speeds of 5G are already four times that of 4G two years ago, he said: “Latency is a stickier wicket. … It’s something that will certainly get better.” In some cases, better speed is “masking” the need for improved latency, he said.

Reference:

https://communicationsdaily.com/article/view?search_id=595619&id=1374622

U.S. wireless carrier groups ask FCC for much larger 5G subsidies

U.S. rural wireless carriers want increased funding for 5G in the areas they serve.  The FCC is planning to allocate $9 billion in the next few years to help finance the construction of 5G networks in rural parts of the U.S.  However, rural carriers want more.  A lot more.

“For many carriers, upgrading to 5G in remote areas will not generate new revenues from existing customers, and likely will not attract many new ones,” wrote the Coalition of Rural Wireless Carriers in a recent filing to the FCC. “Accordingly, the commission should include in any proceeding it opens a proposal to develop a mechanism for providing support for operations and maintenance, to ensure that facilities in remote areas remain operational and that carriers have an opportunity to upgrade them.”

The Coalition of Rural Wireless Carriers membership is comprised of Bristol Bay Cellular Partnership; Carolina West Wireless, Inc.; Cellular Network Partnership, a Limited Partnership, d/b/a Pioneer Cellular; Cellular South Licenses, LLC d/b/a C Spire; East Kentucky Network, LLC, dba Appalachian Wireless; NE Colorado Cellular, Inc. d/b/a Viaero Wireless; Nex-Tech Wireless, LLC; Smith Bagley, Inc.; Union Telephone Company dba Union Wireless; United States Cellular Corporation; and United Wireless Communications, Inc.. A number of these operators have already embarked on 5G deployments.

The Coalition asked the FCC to recommend that Congress update the universal service contribution mechanism, as per this statement in their FCC filing:

“It its upcoming report, the FCC should recommend that Congress enact urgently needed revisions to the universal service contribution mechanism. While the Coalition agrees that the Commission likely has authority to assess broadband under the current classification of broadband service, use of that authority is certain to be challenged in court, delaying a final resolution of the matter for years to come. Congress is best positioned to update the contribution mechanism, including addressing the issue of whether edge providers should contribute to universal service.”

“It is clear that consumers view access to wireless connectivity as vital. Unfortunately, many parts of the United States, especially rural America, are at risk of being left behind,” wrote the Competitive Carriers Association (CCA) [1.] in its filing to the FCC. The CCA represents many of the nation’s smaller wireless network operators. The group argued that more FCC funding is needed to address what it calls the “5G gap.”

Note 1. CCA was founded in 1992 by nine rural and regional wireless carriers as a carrier centric organization. Since its founding, CCA has grown to become the nation’s leading association for competitive wireless providers serving all areas of the United States.  CCA is committed to being the premier advocacy organization for competitive wireless carriers and stakeholders. CCA will use advocacy, leadership, education, and networking opportunities to help competitive carriers grow and thrive in the wireless industry.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

Both the CCA and the Coalition of Rural Wireless Carriers pointed to a recent 5G network buildout model released by financial analysis firm CostQuestThat firm’s report found that $36 billion is needed to support ubiquitous 5G connectivity in the US – far more than the $9 billion the FCC set aside in 2020 for its 5G Fund.

“Establishing the 5G Fund further secures United States leadership in 5G and will close the digital divide and bring economic opportunities to rural America,” the agency argued at the time.

However, FCC officials have said that they plan to wait to allocate the 5G Fund until after the agency finishes developing updated maps that show where broadband is available in the US – and where it is not.  The Coalition wrote in their FCC Filing:

“With respect to the 5G Fund, we urged the Commission to rectify the prior Commission’s premature decision to adopt a rule providing that areas currently receiving unsubsidized 4G LTE service are ineligible for inclusion in the 5G Fund auction. Under the current rule, a rural area that has unsubsidized service at, for example, 5/1, 6/1, or 7/1 Mbps (downstream/upstream bit rates) will be ineligible for universal service investment for a decade. To say to rural citizens that their current service — which is well below typical 5G standards — is what they can expect to receive until the mid-2030s, directly contradicts Section 254(b)(3) of the Act which requires the Commission to develop policies that make rural service quality reasonably comparable to that in urban areas.”

The FCC is aware of this conundrum.  “For too long, our broadband maps have been a patchwork with information gaps that impeded the ability of policymakers to assure that critical funding efforts could be precisely targeted to deploying broadband facilities to consumers and communities most in need,” according to FCC Chairwoman Jessica Rosenworcel.

“We asked the commission to report to Congress that it intends to open a proceeding to develop a record on whether the size of the 5G Fund should be substantially increased to accelerate and sustain mobile broadband investment. We also asked the commission to consider in such a proceeding whether it should develop a middle-mile fiber funding program to increase fiber connectivity to cell towers located in remote areas,” the Coalition of Rural Wireless Carriers concluded.

References:

https://www.fcc.gov/ecfs/search/search-filings/filing/10719203442014

https://www.fcc.gov/ecfs/search/search-filings/filing/106302599815573

https://irp.cdn-website.com/cd1ed710/files/uploaded/CostQuest%20National%205G%20Model.pdf

https://www.lightreading.com/digital-divide/rural-us-wireless-carriers-ask-for-more-5g-subsidies/d/d-id/779195?

U.S. utility operators see a bright future in fiber broadband

Leaders from three rural utility providers discussed their expansions into deploying fiber and how their organizations are getting involved with delivering broadband on a webinar hosted last week by the Fiber Broadband Association,  In Holland, Michigan, for example, the Holland Board of Public Works (HBPW) started building fiber 30 years ago for “enhanced connectivity for monitoring and control” to its systems, said Pete Hoffswell, superintendent of broadband services at HBPW, which operates a power plant, water treatment plant and water reclamation plant.

“Fiber is absolutely essential for very reliable, high-performance connectivity for all that equipment,” said Hoffswell. “If we lose contact with one of our substations and the power goes down, that’s a bad day in our town. And fiber helps us keep that up.”

Katie Espeseth, vice president of new products at EPB, a municipally owned electric power distributor in Chattanooga, Tennessee, that started delivering fiber in 2008 and today has roughly 11,000 miles of fiber deployed, shared Hoffswell’s sentiment and added a number to it.  “We have about 11,000 miles of fiber in our footprint. We serve about 125,000 customers with our broadband services,” said EPB’s Espeseth.

“The cost of power outages in Chattanooga was nearly $100 million a year,” she said, referring to costs to the community (“the cash register or the point of sale terminals not working and that sort of thing,” she explained). Today, the fiber network has reduced power outages by 65% and outage minutes by 52%, which the utility estimates as a $50 million return to the community, she added.

For George Stegall, connectivity manager at Alabama Power, not only does the statewide utility’s fiber network help with power outages, but it is also crucial for the organization’s own fieldwork in its 45,000 square miles of territory.

“A lot of our local offices are relying on the local Internet. And so the systems that we have, from a corporate standpoint, some of our field engineers can’t even run those systems because the Internet connection in those local areas is so poor,” he said. “It’s significant to know that you do not have a limitation from a communication standpoint.”

EPB, Alabama Power and HBPW, which all began deploying fiber to support their power grids, have each expanded into delivering fiber broadband either directly or indirectly. EPB – which turned Chattanooga into “the first gigabit community in the world,” according to Gary Bolton, CEO of the Fiber Broadband Association – operates its own ISP called Fi-Speed. Today, Fi-Speed delivers residential service speeds of 300 Mbit/s, 1 Gbit/sec and 10 Gbit/sec.

In Michigan, Holland BPW delivers fiber to local businesses, municipalities and community institutions and works in partnership with six ISPs: 123.net, Everstream, Sirus, Merit Network, US Signal and The ISERV Group.

“When we started the fiber, we decided any excess capacity in our network would be made available to our community,” said HBPW’s Hoffswell. “We did that and have provided lit services and dark fiber services to our greater community for 30 years now.”

Illustration of fiber-optic cables. (Source: Pixabay)

Illustration of fiber-optic cables.
(Image Credit: Pixabay)

Similar to HBPW, Alabama Power started its fiber build 30 years ago but did not expand into fiber distribution until “three or four years ago,” said Stegall.  Rather than looking to serve as an ISP (“that’s outside of our scope,” he said), Alabama Power is delivering middle mile fiber and currently has service provider partnerships in seven of the 14 markets where its fiber distribution networks are active.

“The other seven are in more rural areas and [it is] harder to find those partners,” Stegall said. “So, we’re very interested and excited to see what the infrastructure bill is going to do in terms of enabling business cases for some areas that did not have traditional telecom business cases.”

Service and infrastructure ‘decoupling’

Indeed, the multi-billion-dollar broadband grant programs in the Biden administration’s infrastructure law specifically reference electric utilities’ role in the future of fiber and broadband delivery.

The $1 billion middle mile program calls out “electric utilities that increasingly recognize their capability to transform the communications market.” And the $42.45 billion Broadband, Equity, Access and Deployment (BEAD) grant program names electric utilities among the “non-traditional providers” as eligible subgrantees and encourages funding open access networks.

That push toward funding open access networks, and recognizing electric utilities and cooperatives as well placed to close broadband infrastructure gaps in the rural US, is enabling new business and delivery models.

In Arkansas, for example, a group of 13 electric co-ops has recently banded together to form Diamond State Networks, a wholesale fiber network, to deliver broadband across the state.

Conexon, a consultancy that works with electric co-ops on fiber delivery, is another example; its newer ISP arm Conexon Connect operates broadband services for electric co-ops that don’t want to take on the role of service provider. (“We help people design and build networks, and we are interested – when an electric co-op is not – in operating the network,” Jonathan Chambers, partner at Conexon, told Broadband World News.)

Alabama Power’s Stegall expects the federal government’s focus on open access to push more utility providers that were previously hesitant to compete with service providers into delivering fiber infrastructure.   “What I see in a sense is the decoupling of an infrastructure play and a services play. It’s the future,” he said.

References:

https://broadbandworldnews.com/document.asp?doc_id=778384&

Diamond State Networks to invest more than $1.66 billion in fiber infrastructure in Arkansas

A new consortium in Arkansas is leading the way forward for electric cooperatives in the rural U.S. can increase bandwidth and save costs by collaborating on fiber broadband delivery.

Diamond State Networks (DSN) is a collective of 13 electric co-ops from across the state of Arkansas which are joining forces to deliver wholesale fiber broadband. All in, the cooperative networks’ 50,000 miles of fiber will cover 64% of Arkansas and reach 1.25 million rural Arkansans. The goal for DSN is to serve 600,000 residences and businesses in Arkansas in the next few years, with over 250,000 locations already deployed. Here’s a network coverage map:

The 13 member cooperatives in DSN include: OzarksGo, Clay County Connect, Farmers Electric Cooperative, Petit Jean Fiber, Enlightened by Woodruff Electric, NEXT Powered by NAEC, Wave Rural Connect, Arkansas Fiber Network (AFN), Four States Fiber Internet, empower (delivered by Craighead Electric), MCEC Fiber, South Central Connect and Connect2First.

Doug Maglothin, DSN’s director of operations, says his company  expects to add “a couple more cooperatives” to that list. (The state of Arkansas has 17 electric co-ops, served by a central entity called the Arkansas Electric Cooperative Corporation.)

The collective of co-ops that form DSN are at different phases of their service delivery journey. Some, like Farmers Electric, are in the early planning stages. OzarksGo – the subsidiary of Ozarks Electric Cooperative – is furthest along and nearing 40,000 subscribers. Indeed, Maglothin referred to Ozarks Electric CEO Mitchell Johnson as the “visionary” for DSN, who saw the need for the state’s electric co-ops to get involved with broadband delivery in 2015 and 2016.

But as electric co-ops began entering the space in 2017 and 2018, “pretty quickly, you find out how difficult and expensive it can be to buy connectivity to the global Internet,” said Maglothin. It was “from that necessity” that the plan for DSN was born.

While the consolidated electric cooperative model is unique for the broadband space, other states and communities are deploying broadband as collectives or partners. That includes Utopia Fiber’s municipal, open access fiber delivery network in Utah as well as California’s planned open-access statewide middle-mile network. And this week, a group of rural telcos and an electric cooperative in Indiana announced plans to launch HoosierNet, a “multi-year, multi-million-dollar” statewide fiber network.

Maglothin said DSN is collaborating with other states looking for a similar solution and that Diamond State has “kind of become a beacon for cooperative middle mile,” as it offers a model that allows electric co-ops to control their costs.

“The more bandwidth you grow, the more content you collect, the more powerful your voice is in negotiating pricing to get to these big anchor points for your network,” said Maglothin. “So we feel like there’s a potential future for cooperative companies working together like this where we become one of the largest bandwidth aggregators probably in the country.”

The 13 member co-ops are investing more than $1.66 billion in fiber infrastructure for DSN. According to Maglothin, less than 20% of that funding is from federal and state grants. But he expects that DSN will be eligible for Broadband Equity, Access, and Deployment (BEAD) and Middle Mile grant funding, federal programs worth $42.45 billion and $1 billion, respectively.

According to Broadband.Money, a platform connecting local providers and networks with funding opportunities, Arkansas is estimated to receive $1.4 to $1.6 billion for broadband through the Infrastructure Investment and Jobs Act (IIJA). But those numbers are still to be determined by federal broadband mapping data that officials say will be released later this year.

Notably, while existing FCC broadband data is widely understood to undercount the digital divide in the US, a recent presentation by the Broadband Development Group at the Arkansas Rural Connect Broadband Forum revealed that the state’s broadband gap may now be smaller than the FCC’s count shows. While federal data puts Arkansas’ digital divide at 250,000 households or 21% of the population, BDG’s analysis brought that to 209,000 households (17%).

Maglothin attributes this increase in broadband access to the work electric co-ops have done in recent years. “It’s because of the rapid onset of cooperative fiber being pushed out,” he said.

For this reason, and with more funding coming down through the BEAD program, Maglothin thinks that Arkansas can go from being among the lowest-ranked states in the US for connectivity to the highest.

References:

https://www.diamondstatenetworks.com/

https://www.diamondstatenetworks.com/thirteen-arkansas-electric-cooperatives-come-together-to-create-new-wholesale-broadband-provider%ef%bf%bc/

https://www.broadbandworldnews.com/document.asp?doc_id=778063&

https://www.diamondstatenetworks.com/network/

Starlink’s huge ambition and deployment plan may clash with reality

Starlink’s first mission of 2022 launched another 49 satellites into orbit, extending its grand total to nearly 2,000. But since completing its first orbital shell of about 1,600 satellites last May, “Starlink’s launch frequency has slowed dramatically with only four rocket launches over the past seven months, or roughly one every seven weeks,” explained Craig Moffett, principal analyst at MoffettNathanson in a note to clients.  Craig wrote:

Starlink’s ambition is huge (a constellation of as many as 42,000 satellites). And the implied valuation for the still-private company is huge ($100B+ for all of SpaceX).

This “hugeness” has captured investors’ imaginations and no doubt hugeness itself is very much part of its appeal. But we haven’t yet seen investors come to grips with all of the implications of this bigness. We were struck by Elon Musk’s recent tweet conceding a “genuine risk of bankruptcy” – immediately dismissed by some as hyperbole – and it got us thinking about scale, and risk, in ways we really hadn’t considered before.

Moffett notes  that the new Starlink V1.5 satellites are heavier, leading to fewer satellites per launch. “At a payload of 50 satellites per launch for Falcon 9 rockets – down from 60 per launch for V1.0 satellites – SpaceX would need to drastically increase launch frequency to once every seven days for five consecutive years just to launch the satellites required for their planned constellation of ~12,000 by their FCC deadline in 2027.”

In low-Earth orbit, satellites will drift back to Earth and burn up on re-entry. Assuming the satellites have an average lifespan of five years, the number of launches to simply replace expiring satellites will, by year five, be as large as the number of launches required over the next five years to grow the constellation. By the end of 2030, just nine years from now, they would have had to launch nearly 23,000 satellites in support of a 12,000 bird constellation. Assuming a Falcon 9 payload of 50 satellites, that would imply 48 launches each year – roughly one every seven days – just to sustain a constellation of 12,000 satellites even after the constellation is “finished.”

Privately held SpaceX (Starlink’s owner) will also need to strongly increase manufacturing capacity and manage tricky supply chain logistics to meet the needs for Starlink, as well as for SpaceX’s clients.

Based on $30 million per launch, Moffett estimates that it would cost about $15 billion to build a constellation of 30,000 satellites, with satellite replacement (production and launch) alone costing more than $3.6 billion per year.  Please see chart below.

Starlink hopes to beef up its capabilities with Starship, a larger launch vehicle that’s had its share of problems, with an orbital test flight that could take place as soon as March. However, Craig suggests that Starship isn’t necessarily the answer to the problem, considering that new V2.0 satellites will be perhaps four times as massive as previous generation Starlink LEO satellites.

In November 2021, Elon Musk distributed a companywide email stating that a production crisis centered on the Starship rocket engine puts SpaceX on a path to “genuine risk of bankruptcy if we cannot achieve a Starship flight rate of at least once every two weeks next year.”

However, the costs will be very high.  Moffett says the “sustenance” cost of the constellation, before considering any costs associated with overhead, engineering, ground facilities, network operations centers, or end-user support, installation, and/or maintenance, could tally $5B per year as per this chart:

Satellite projects are, by their very nature, huge. A defining characteristic of big infrastructure investments is that they demand that investors be confident about the success and payoffs from infrastructures that may take as much as a decade to build.

Moffett is concerned that investors [1.] have yet to “come to grips with all of the implications” of the audaciousness of the Starlink’s huge ambitions.

Note 1.  It’s important to note that Starlink is part of SpaceX, which is still a privately owned company.  As of October 2021, Barron’s said that “Elon Musk owns roughly 50% of SpaceX.” It is not known who or whom owns the other half of SpaceX

…………………………………………………………………………………………………………………………….

References:

https://www.lightreading.com/satellite/starlinks-daunting-deployment-plan-leaves-no-margin-for-error—analyst/d/d-id/774665?

https://www.barrons.com/articles/elon-musk-net-worth-trillionaire-51634679420?tesla=y

India’s BSNL Selects NOVELSAT Hub System for Remote Islands Connectivity

NOVELSAT’s High Performance Hub Will Enhance Broadband Connectivity to Lakshadweep, Andaman and Nicobar Islands. The contract was awarded by System Integrator Precision Electronics Ltd (PEL) on behalf of BSNL.  

State-run telecoms provider (BSNL) selected Israeli satellite transmission company Novelsat to provide high-capacity satellite-based backhaul and broadband services to Lakshadweep, Andaman, and Nicobar Islands under a Universal Service Obligation (USO) project funded by the Department of Telecommunications (DoT).   The contract was awarded by System Integrator Precision Electronics Ltd (PEL) on behalf of BSNL.

Under the partnership, BSNL will use Novelsat’s Xnet Data Hub system [1.] for flexibility in its growing network.  BSNL will also use Novelsat’s DynamiX technology for dynamic allocation of network resources in MCPC/Point-to-Multi-Point networks on top of Novelsat’s NS4 waveform for improved network economics, the company said.

Note 1. The Xnet Data Hub is for Point-to-Multi-Point satellite network data applications requiring high performance connectivity. Addressing multiple applications including enterprise, backhaul & trunking, government & defense, aero and maritime, NOVELSAT Xnet Data Hub delivers highly integrated and optimized and efficient hub solution.

 

Satellite backhaul more practical than fiber backhaul for remote islands:

Satellite has always been the advantageous solution for remote and hard to reach locations. As cost of satellite capacity continues to sharply decrease, satellite connectivity cost now rivals terrestrial solutions in a growing number of use cases, making satellite connectivity a viable and economical solution for providing connectivity to more locations and more users. Offering compressive point-to-point and point-to-multi-point solutions, NOVELSAT provides high data rate broadband connectivity for demanding telecom and enterprise applications including: backhaul, trunking, backbone networks, enterprise networks, maritime and aero connectivity.

…………………………………………………………………………………………………………………………………………

BSNL is looking to increase its network capacity to address growing demand for broadband amidst sharp rise in data consumption across users and locations. PEL along with its technology partner NOVELSAT addressed the BSNL requirement, and in turn their customer BSNL selected NOVELSAT’s Xnet Data hub system for the exceptional efficiency and flexibility it offers for growing BSNL network.

Designed to support the growing needs of hub network operators, NOVELSAT’s Xnet optimizes and maximizes both performance and usage of satellite and network resources. Utilizing NOVELSAT’s DynamiX technology for dynamic allocation of network resources in MCPC/Point-to-Multi-Point networks on top of the most bandwidth-efficient waveform, NOVELSAT NS4™, significantly improves network economics.

NOVELSAT partnered with Precision Electronics Limited, a listed company in India to offer its solution to BSNL. Precision Electronics Limited brings in network elements like networking gear, antenna & indoor/outdoor electronics, and overall systems integration beyond the core satellite hub and remote solution from NOVELSAT.

“BSNL’s network requires the highest levels of network quality and flexibility. NOVELSAT’s proven track record, combined with its leading-edge technology, allow us to rapidly expand our network and offer better services to our customers,” said Sh. Sanjay Kumar, GM (Radio) at BSNL. “NOVELSAT has been selected to meet our challenge of providing highly efficient and reliable broadband connectivity between our country’s islands and the mainland. With this solution we are supporting the goal of accelerating the economic growth and bettering the life of the islands population”.

“We are honored to play a part in the rollout of enhanced broadband connectivity to the people of Lakshadweep, Andaman, and Nicobar Islands, and we are committed to supporting BSNL during these challenging times, as it implements its network development,” said Gary Drutin, CEO of NOVELSAT. “The BSNL deployment is a great example of the benefits offered by NOVELSAT’s Xnet data hub system, delivering a high capacity, scalable solution with maximum performance and efficiency.”

Last month, U.S.-based ST Engineering iDirect inked a partnership with BSNL to provide satellite broadband to the Indian islands of Andaman & Nicobar and Lakshadweep.

About BSNL

BSNL is an Indian state-owned telecommunications company, headquartered in New Delhi, India. It was incorporated by the Department of Telecommunications (DOT), Ministry of Communications, Government of India in 2000. It provides mobile voice and internet services through its nationwide network across India. It is the largest government owned telecom company in India offering variety of services in retail and enterprise segment.

About PEL

Precision Electronics Ltd. (PEL) is a listed company that is focused to provide customized mission critical solutions to its customers. Backed by a strong Design & Engineering team and a state of art manufacturing infrastructure, PEL designed products are being used by the Indian defence/paramilitary forces, TSPs, Railways, Healthcare sector to name a few. It is strongly poised to garner substantial business in the near future.

About Novelsat

NOVELSAT is an innovator and a leading provider of next-generation content connectivity solutions over satellite. Powered by our innovative technology, our solutions are transforming network capabilities to drive new experiences and expand growth potential.

Our leadership foundations are built around our proprietary waveform and premier system architecture, combined with cutting-edge video capabilities and best-in-industry content security. Pioneering, expanding and enhancing core and end-to-end capabilities, we outperform competitive solutions and products, delivering new levels of performance, efficiency and flexibility. Our high-performance solutions are setting the industry standards in spectral efficiency, transmission performance, media processing, video delivery, and content protection, powering mission-critical and demanding applications for the broadcast, cellular, government, and mobility markets.

World’s leading service and content providers have recognized the unique value of our state-of-the-art technology, selecting our solutions for their most demanding applications, including: Video transmission for the world’s leading broadcasters and content rights holders, as well as for the world’s major sports events; Broadband connectivity for backhaul/trunking networks of leading network operators and services providers; Mission critical communications for military, defense, security and emergency organizations; and Earth observation connectivity for leading earth observation constellation.

………………………………………………………………………………………………………………………………………….

References:

https://telecom.economictimes.indiatimes.com/news/bsnl-selects-novelsat-for-satellite-broadband-backhaul-services/81583946

 

BSNL Selects NOVELSAT Hub System for Remote Islands Connectivity

Should Web Giants Partner with Telcos to bring Broadband to 3rd World?

Facebook along with Indian telecom giant Bharti Airtel Ltd.’s Ugandan unit and Mauritius-based Bandwidth & Cloud Services Group, has deployed nearly 500 miles of fiber-optic cable across the isolated northwest of Uganda. The project, begun in early 2017 and completed at the end of last year, has expanded the region’s network capacity, providing faster internet access to an area with some three million people, many of whom live in towns still haunted by memories of the three-decade insurgency led by Joseph Kony’s Lord’s Resistance Army.

The Ugandan cable is the largest terrestrial network Facebook has helped construct in Africa and part of what the company describes as a broader push to connect the approximately 3.8 billion people who are still without internet around the world.

The move comes as Facebook’s user growth slows in developed markets like the U.S. and Europe. The social media giant’s presence on the continent remains small compared with other regions, but the Menlo Park, Calif.–based company said its strategy to get more people onto a faster and more robust internet will plug more of sub-Saharan Africa into the global economy.

Indeed, the summer of 2018 brought different fortunes to attempts by Facebook and Google to offer broadband services using high-flying drones and balloons (atmospheric satellites) to the unserved in remote rural areas.

GlobalData, a data and analytics company, feels that webscale giants need to partner with telcos globally to address the affordability challenge of reaching out to the unconnected in rural markets with atmospheric satellites.

Atmospheric satellites fit in the space between true satellites commonly used for communications and ground-based networks. Their theoretical advantage over satellites is much lower cost. Launching a balloon or a drone and equipping it with a radio base station represents a much cheaper way of covering large swaths of land. Considering one-third of the world population remains unconnected, the lower costs associated with balloon- or drone-based coverage is compelling.

However in June 2018, following several setbacks over a period of four years, Facebook abandoned developing its own high-flying solar-powered drones (Aquila project) for delivering Internet. However, the California-based social media giant said that it will focus on working with partners like Airbus on high altitude platform station (HAPS) system, which is capable of beaming down high-speed Internet to the unserved in 3rd world countries.

On the other hand Alphabet, the parent company of Google, turned its Loon balloon project into an independent company and announced its first commercial project with partly-state owned Telkom Kenya in July 2018. The partners plan to launch balloon-based 4G/LTE services commercially to parts of central Kenya, starting from 2019.

               Alphabet’s Project Loon uses helium balloons to bring internet access to remote locations

…………………………………………………………………………………………………………………………………………….

Google used Project Loon in Puerto Rico last year after two hurricanes destroyed much of the telecom infrastructure on the island.  Project Loon’s pilot deployment with Telkom Kenya may provide the clearest test of whether atmospheric satellites can really work. This puts pressure on Loon to demonstrate it has a viable technology.

Emir Halilovic, Telecom Technology and Software Analyst at GlobalData, said:

“Things get more complicated when the practical challenges of covering the unconnected masses with drone- or balloon-based mobile signals are considered. For starters, the potential customers for services provided from atmospheric satellites are not concentrated in one part of the world; rather, they are spread across remote, rural, or tribal areas, in many different countries and continents.”

Truly addressing this group would require the participation of multiple operators in dozens of countries. Moreover, most of the unconnected usually do not live outside areas where they can get mobile service; they just cannot afford a mobile plan. Drones and balloons do little to address the ’affordability’ challenge.

Halilovic concludes:

“Still, there are reasons to continue to pursue atmospheric satellites to provide coverage to the underserved rural communities, which could use internet connection to improve access to medical services in isolated locations, for example. Another use case for atmospheric satellites is quick restoration of communication services in natural disasters. Telcos should therefore continue to test atmospheric satellites to support development of such services.”

Critics say Facebook’s ventures into less-developed markets could undermine net neutrality by channeling traffic to its own platform and away from competitors. An earlier effort by Facebook to expand internet access in the developing world faltered in 2016, when India’s telecommunications regulator effectively banned the company from offering free access to a low-data version of Facebook and selected websites and apps. Governments across Africa—including in Uganda—are rolling back internet freedoms and cracking down on social media.

Facebook, which declined to comment on the cost of the Ugandan cable, says its Africa strategy is a long-term effort. Analysts say the lack of connectivity on the continent is a central impediment to increasing economic growth: Removing barriers to commerce and trade should create more opportunities for consumers to spend.

“It’s not a philanthropic venture. It’s a strategic investment with a long-term goal,” said Ebele Okobi, Facebook’s director of Africa public policy. “We see this as an enabler of our business, not as a way to gain advantages.”

Dexter Thillien, a London-based analyst with Fitch Solutions, said Facebook, conscious of the risks, is still testing the waters in Africa.   “It’s where they can make the least money, at least right now,” he said.

The word “Africa” appears just once in Facebook’s 2017 annual report, to inform readers that the continent is included, along with the Middle East and Latin America, under its “Rest of World” designation.

Since the fiber rollout, Airtel Uganda has installed 33 new telecom towers in northern Uganda, while 71 towers have been upgraded to 3G and another 43 towers now beam 4G, which improves users’ ability to download and stream quickly, the company said. Previously, most places in the region had 2G or no service at all—a far cry from developed economies, which are racing to roll out 5G networks. More than half of Africa’s mobile broadband connections remain 2G (which AT&T has discontinued in the U.S.).

“That cable is fast for internet. That means communications will be much easier,” said Patricia Akello, project manager for Youth Alive, a Gulu-based provider of youth HIV counseling and testing. “Internet has become a necessity: Allowing young people access will educate them. They’ll be better able to prevent HIV…and they can be educators to others in the community.”

Meanwhile, telcos like AT&T are testing drones to act as temporary cell sites after a disaster, Inside Towers reported. BAE Systems’ PHASA-35 could bring internet access to the most remote corners of the world,  Martin Topping, delivery director at BAE Systems said: “Essentially any payload that can fit within the capacity can be put inside it.  That could be 5G and 6G communications, border surveillance, agriculture and forestry, famine relief – it’s infinite. The vehicle is the carrier – the transit van. Spying is quite a niche usage.”

References:

https://www.enterpriseinnovation.net/article/webscales-need-partner-telcos-bring-atmospheric-satellite-services-unconnected-201758349

https://www.wsj.com/articles/facebook-pushes-into-africa-1539000000

Microsoft & Packerland Broadband target 25/3 Mbps (DS/US) using TV White Spaces/WiFi

Microsoft’s Airband TV White Spaces initiative is a project that plans to bring broadband to 2 million rural Americans by 2022, beginning in Michigan and Wisconsin. Microsoft is partnering with Packerland Broadband (a division of CCI Systems).  The companies are aiming for speeds of 25 Mbps downstream and 3 Mbps upstream for a fixed wireless deployment in rural Michigan and Wisconsin that will use TV white spaces and other technologies, said Cory Heigl, vice president for Packerland Broadband.  The technology is “maturing pretty rapidly” and the companies hope manufacturers will support 25/3 Mbps speeds by year-end, Heigl said in a phone interview with Telecompetitor.

Packerland will use a mix of technologies to provide broadband to its customers in rural communities, including TV White Spaces and Wi-Fi hardware developed with support from Microsoft, to extend the reach of its existing hybrid fiber-coax and wireless delivery platforms. TV white spaces technology uses vacant TV broadcast spectrum and has excellent propagation, making it well suited to serve locations lacking a clear line of sight to the base station.

Packerland expects to cover approximately 33,750 people by the end of 2019, and approximately 82,000 people by 2022. As part of the Packerland-Microsoft project, Packerland will provide Windows devices, Office 365 and other cloud-based services to small businesses, consumers and students, as well as digital literacy skills training. Packerland will also leverage Microsoft Azure as part of its operations management.

When Microsoft announced Airband plans in July 2017, the company said TV white spaces will be the best approach to reaching communities with population densities between two and 200 people per square mile, while areas with lower population densities would be best served by satellite and those in areas with more than 200 people per square mile would be best served with fiber-to-the-home.   Soon after Microsoft announced their initiative in July, AT&T and NetComm Wireless announced a plan to bring fixed-wireless broadband to 18 states.

Around 34 million Americans, including 19.4 million people living in rural parts of the US, don’t have adequate broadband, according to the release. About 43% of rural Wisconsin and 34% of rural Michigan lack proper internet access and thus miss out on the benefits it can offer, Microsoft said.

Quotes:

“Northern Wisconsin is nothing but forest,” making it challenging to use other wireless technologies, observed Heigl. Distances covered are expected to range from about one to four miles, Heigl added.

The Microsoft – Packerland service, which will also tap other fixed wireless and wired technologies, is targeted to be available to 33,750 people by the end of 2019 and approximately 82,000 people by 2022. This  deployment is one of 12 projects planned as part of the Microsoft Airband TV White spaces initiative, which aims to bring broadband to 2 million people in rural America by 2022.

“This partnership with Packerland Broadband will help us address the rural broadband gap in northern Wisconsin and Michigan’s Upper Peninsula,” said Brad Smith, president of Microsoft. “Broadband has become the electricity of the 21st century, essential for education, business, agriculture and health care. Microsoft’s Airband Initiative is focused on bringing this necessity of life to 2 million people in rural counties by 2022.”

“Partnering with Microsoft allows us to bring new services and push our services further into the rural landscape in our region and beyond,” said Cory Heigl, vice president of Packerland Broadband. “We are the people we serve, and in this part of the world, we want to make an impact for the better. Our partnership with Microsoft will help us to influence lives by improving at-home education, enhancing economic opportunities, keeping up with health care advancements and furthering the agricultural innovation of our rural communities.”

“The mission of TechSpark Wisconsin is to bring new digital solutions to our region,” said Microsoft TechSpark Wisconsin Manager Michelle Schuler. “Packerland Broadband and Microsoft are making it possible for people living in rural Wisconsin to have the same opportunities to live, learn and work as people living in connected cities. That’s win-win for the people living here and the region’s economy.”

CCI Systems, Inc. CEO John Jamar said, “We have been focused on making life better by connecting people through innovative communications networks, and we are enthused to team up with our friends at Microsoft to accelerate that.”

“The time is right for the nation to set a clear and ambitious but achievable goal – to eliminate the rural broadband gap within the next five years by July 4, 2022, “said Brad Smith, president and chief legal officer at Microsoft in a blog post announcing the project. “We believe the nation can bring broadband coverage to rural America in this timeframe, based on a new strategic approach that combines private sector capital investments focused on expanding broadband coverage through new technologies, coupled with targeted and affordable public-sector support.”

References:

Packerland Broadband and Microsoft announce agreement to deliver broadband internet to rural communities in Wisconsin and Michigan

 

https://www.techrepublic.com/article/microsoft-partnership-will-provide-broadband-internet-to-rural-wisconsin-michigan/

http://michiganradio.org/post/microsoft-and-michigan-company-partner-expand-broadband-wisconsin

 

2017 Telecom Council’s TC3 Summit: SPIFFY Award Winners + Start-up Success Stories

2017 SPIFFY Awards:

Seven pioneering start-up companies were recognized by the Service Provider Innovation Forum (SPIF) at the 10th Annual SPIFFY Awards held Wednesday evening November 1st at TC3 Summit.

Since 2001, the Telecom Council has worked to identify and recognize companies who represent a broad range of cutting-edge telecom products and services. From there, dozens of young companies are presented each month to the Service Provider Innovation Forum (SPIF), ComTech Forum, IoT Forum, and Investor Forum.

SPIF members, who represent cutting-edge telcos from over 50 countries and who serve over 3B subscribers, selected seven companies from hundreds of presenting communication startup companies and 30 SPIFFY nominees as best-in-class in their respective categories. Each winner, who is set apart for their dedication, technical vision, and interest from the global service provider community, is a company to watch in the telecommunication industry.

The winners below represent the best and brightest in their respective categories:

  • The Graham Bell Award for Best Communication Solutions – Sightcall :  a cloud API that enables any business to add rich communications (e.g. video), accessible with a single touch, in the context of their application.
  • Edison Award for Most Innovative Startup – DataRPM: cognitive preventive maintenance platform.
  • San Andreas Award for Most Disruptive Technology – Veniamnetworking solution for future autonomous vehicles; mobile WiFi done right.
  • Core Award for Best Fixed Telecom Opportunity – Datera: storage and data management for service providers, private cloud, digital business via “Datera elastic data fabric software.”
  • Zephyr Award for Best Mobile Opportunity – AtheerAir: augmented reality solutions for industrial enterprises.
  • Ground Breaker Award for Engineering Excellence – Cinovavirtual reality streaming at practical bit rates using Cinova’s cloud server technology.
  • Prodigy Award for the Most Successful SPIF Alumni – Plexstreaming media server and apps to stream video, audio and photo collections on any device.

This year’s entrepreneurs had a chance to vote on the operators as well, to give a shout out to those telcos who were supportive, approachable, and helpful to young and growing telecom companies. The entreprenneurs chose Verizon.

  • Fred & Ginger Award for the Most Supportive Carrier – Verizon.

The SPIFFY nominees attended the awards ceremony along with 50 global fixed and wireless communications companies and over 300 industry professionals. Photos of the event can be found on Telecom Council’s blog and Instagram pages.  Note that none of this year’s SPIFFY award winners, with the possible exception of Veniam, actually provide a connectivity (PHY, MAC/Data Link layer) solution.

……………………………………………………………………………………………………………………………………….

Author’s Notes on three impressive start-ups that presented at TC3 on November 1st (only day I attended 2017 TC3):

1.  In a session titled “Closing the Rural Broadband Gap,” Skyler Ditchfield, CEO of GeoLinks, provided an overview of his company’s success in providing high-speed broadband to schools and libraries using fixed wireless technologies, specifically microwave radio operating in several frequency bands.  The company’s flagship service is ClearFiber™, which offers customers fixed wireless broadband service on the most resilient and scalable networkSkyler described the advantages of their 100% in house approach to engineering, design, land procurement, construction and data connectivity. GeoLinks approach offers gigabit plus speeds at a fraction of the cost of fiber with lower latency and rapid deployment across the country.

A broadband fixed wireless installation on Santa Catalina island was particularly impressive.  Speeds on the island (which GeoLinks says is 41 miles offshore) are typically 300 Mbps, and the ultra-fast broadband connection provides support for essential communications services, tourism services, and commerce.  GeoLinks successfully deployed Mimosa Network´s fiber-fast broadband solutions to bring high-speed Internet access to the island community for the first time in its history.  Connecting the island to the mainland at high speeds was very challenging. GeoLinks ultimately selected Mimosa for the last mile of the installation, deploying Mimosa A5 access and C5 client devices throughout the harbor town of Avalon.

Another ClearFiber™ successful deployment was at Robbins Elementary school in California.  It involved 19 miles of fixed broadband wireless transport to provide the school with broadband Internet access.

Skyler said that next year, GeoLinks planned to deliver fixed wireless transport at 10G b/sec over 6 to 8 miles in the 5Ghz unlicensed band- either point to point OR point to multi-point. The company is considering 6GHz, 11GHz, 18Ghz and 20Ghz FCC licensed bands.  He said it would be important for GeoLinks to get licensed spectrum for point to multi-point transmission.

More on GeoLinks value proposition here and here.   And a recent blog post about Skyler Ditchfield who told the TC3 audience he grew up fascinated by communications technologies.   This author was very impressed with Skyler and GeoLinks!

2. In a panel on “Startup Success Stories,” Nitin Motgi, founder and CEO of Cask (a “big data” software company) talked about how long it took to seal a deal with telcos.  It’s longer than you might think!  In one case, Nitin said it was 18 months from the time an unnamed telco agreed to purchase Cask’s solution (based on a proof of concept demo) till the contract was actually signed and sealed. Nitin referred to the process of selling to telcos as “whale hunting.”  However, he said that if you succeed it’s worth it because of the telco’s scale of business.

3. Tracknet Co-Founder and CEO Hardy Schmidbauer presented a 5 minute “fast pitch” to the Telecom Council Service Provider Forum.  He talked about his company’s highly scalable LPWAN/ IoT network solutions:   “TrackNet provides LoRaWAN IoT solutions for consumers and industry, focusing on ease of use and scalability to enable a “new era” of exponentially growing LPWAN deployments.”   The company is a contributing member of the LoRa Alliance and the TrackNet team has been instrumental in specifying, building, and establishing LoRaWAN and the LoRa Alliance for more than five years.  The founding Tracknet team includes veterans from IBM and Semtech who were instrumental in the development of LoRa and LoRaWAN.

With “Tabs,” Tracknet combines a WiFi connected IoT home and tracker system with LoRaWAN network coverage built from indoor Tabs hubs.

………………………………………………………………………………………………………………………………………….

About the Telecom Council: The Telecom Council of Silicon Valley connects the companies who are building communication networks, with the people and ideas that are creating them – by putting those companies, research, ideas, capital and human expertise from across the globe together in the same room. Last year, The Telecom Council connected over 2,000 executives from 750 telecom companies and 60 fixed and wireless carriers across 40 meeting topics. By joining, speaking, sponsoring, or simply participating in a meeting, there are many ways telecom companies of any size can leverage the Telecom Council network. For more information visit: https://www.telecomcouncil.com.

Reference:

http://blog.telecomcouncil.com/blog/2017-spiffy-award-winners-announced-telecom-councils-annual-service-provider-forum-ceremony/

 

Image result for pic of telecom council TC3 2017

…………………………………………………………………………………………………………………………………………………………

Forward Reference:

A follow up TC3 blog post will provide an update on project CORD (Central Office Re-architected as a Data Center) from the perspective of the Open Network Foundation (ONF) with panelists from AT&T and Verizon.

Rural Americans would greatly benefit from Open Internet rules and more investment

NOTE: This article complements others we’ve recently posted on U.S. carriers move to broadband fixed wireless access for rural and under-served geographical areas.

………………………………………………………………………………………………………………………………………………………………………………………

In many rural communities, where available broadband speed and capacity barely surpass old-fashioned dial-up connections, residents sacrifice not only their online pastimes but also chances at a better living.  Counties without modern internet connections can’t attract new firms, and their isolation discourages the enterprises they have: ranchers who want to buy and sell cattle in online auctions or farmers who could use the internet to monitor crops. Reliance on broadband includes any business that uses high-speed data transmission, spanning banks to insurance firms to factories.

Rural counties with more households connected to broadband had higher incomes and lower unemployment than those with fewer, according to a 2015 study by university researchers in Oklahoma, Mississippi and Texas who compared rural counties before and after getting high-speed internet service.

“Having access to broadband is simply keeping up,” said Sharon Strover, a University of Texas professor who studies rural communication. “Not having it means sinking.”

Ensuring access to an open, thriving online ecosystem through modern and even-handed internet rules is critical for every American, but much more so for the 60 million rural Americans who rely on the internet to connect them to a rapidly evolving global economy. Studies show that as rural communities adopt and use broadband services, incomes go up and unemployment falls. Broadband providers support protections that ensure consumers and innovators alike don’t have to worry about blocked websites or throttled service. Rural areas need more investment, not less. And modern Open Internet rules will encourage this needed progress.

Full Story:  ustelecom.org

Sidebar – Fast Internet Service:

About 39% of the U.S. rural population, or 23 million people, lack access to broadband internet service—defined as “fast” by the Federal Communications Commission—compared with 4% of the urban residents.

Fast Internet service, according to the FCC, means a minimum download speed of 25 megabits per second, a measure of bandwidth known as Mbps. That speed can support email, web surfing, video streaming and graphics for more than one device at once. It is faster than old dial-up connections—typically, less than 1 Mbps—but slower than the 100 Mbps service common in cities.

………………………………………………………………………………………………………………………………………………………………………….

A recent Forbes article titled “Don’t Forget Rural America…..” by Richard Boucher stated:

In announcing the “Restoring Internet Freedom” rulemaking, the FCC stated that “[o]ur actions today continue our critical work to promote broadband deployment to rural consumers and infrastructure investment throughout our nation, to brighten the future of innovation both within networks and at their edge, and to close the digital divide.”  This past July, the Commission declared August to be “Rural Broadband Month” at the FCC.

Two years following the 2015 reclassification of broadband as a common carrier telecommunications service, it’s clear that broadband investment has declined in rural America. Representatives of internet service providers (ISPs) from states like Arkansas, Washington, Kentucky, and Nebraska have all offered evidence detailing how regulatory uncertainty arising from the “Title II” decision has retarded and, in many situations, stopped investment in their regions.

The formula for bringing high-speed internet connectivity to everyone in rural America is multi-faceted. It requires a combination of wired and wireless deployments, and government – through the FCC’s Universal Service programs and loans and grants from the U.S. Departments of Commerce and Agriculture – all have a role to play. But indispensable to success is the creation of a regulatory framework that incentivizes private capital to deploy broadband everywhere, including rural America. As long as the regulatory uncertainty of Title II remains, rural America to a large extent will be cut off from essential private broadband deployment funding and, as a result, fall even further behind.

The discussion, as well as a fair amount of heated rhetoric, are sure to continue over the next few weeks regarding the proper classification for broadband. Meanwhile, don’t forget rural America. The best way to ensure that all corners of the country get the connectivity they need is for the FCC to restore the classification of broadband as an information service. Thereafter, Congress should enact legislation that codifies open internet rules and at long last puts to rest a debate that has raged for more than a decade.

…………………………………………………………………………………………………..

Another approach to delivering rural broadband are co-ops like this one:

Tennessee Electrical Co-Ops Eager to Bridge Rural Broadband Gap

Other References:

AT&T’s Rural Broadband Expansion Continues: 9 More States Added

 

CenturyLink asks FCC to approve 3.4 GHz Fixed Wireless Test

https://www.vox.com/videos/2017/9/26/16367798/rural-broadband-fast-internet-fcc-proposal

https://www.wsj.com/articles/rural-america-is-stranded-in-the-dial-up-age-1497535841