Mavenir at MWC 2022: Nokia and Ericsson are not serious OpenRAN vendors

Andrew Wooden of telecoms.com talked with Mavenir’s SVP of business development John Baker and CMO Stefano Cantarelli to gauge how industry is feeling towards OpenRAN.  Here are a few quotes:

“Clearly the (OpenRAN) train has left the station, there’s a lot of buzz about OpenRAN – it’s back to the haves and have nots,” Baker told us. “I see a lot of interest from network operators and a lot of interest from the component suppliers. But on the other side of it, about [Nokia’s recent statement about OpenRAN] – they’re full of it. Because they’re a startup in OpenRAN themselves but are not doing anything. They’re trying to pass  on a message that the OpenRAN community is confused, that there are no real OpenRAN players out there, and they’re trying to position themselves as the real OpenRAN player. Digging underneath that, we’re having to call out the Nokia’s and Ericsson’s for confusing the story and trying to keep the confusion running around the marketplace, about the status of OpenRAN.”

Ericsson has been clear right up front that [they’re] not going to participate in OpenRAN. They name their products as Cloud RAN but you can’t mix and match, so they don’t they don’t meet the OpenRAN requirements. I stand very firm that unless you’ve got two suppliers interworked, then you haven’t got OpenRAN.”  Of course, this author agrees 100%!

Regarding Nokia, Baker said: “We’ve been asking for the last two years, every month almost, we’re ready to interwork, when are you ready? And they never get there. So our view is Nokia doesn’t have anything, they’re just trying to protect an old silicon strategy. And that’s their problem. They’ve had two failed attempts, in my opinion, of their silicon strategy – first time they got it completely wrong. Second time they got it too late for the industry because software is now replacing where they are with silicon. I think at the end of the day those two logos are going to disappear in the distance.”

Cantarelli added: “I think Ericsson and Nokia are not stupid. They know OpenRAN is the future, it’s just at the beginning they didn’t think about it, and now they’re a bit late. So they’re protecting their legacy. And they’re waiting for when they’re going to be ready, so it’s purely a delaying technique.”

Some observers  think OpenRAN is immediate, and of singular importance, but others don’t think it will be as disruptive as that, at least not right now.  This author is in the latter camp.  We’ve explained why many times why:  without implementation standards there is no interoperability!

References:

Mavenir slams Nokia and Ericsson for confusing the OpenRAN story

OpenRAN in 30% of Vodafone European network by 2030; Europe way behind China and South Korea in 5G deployments

Ericsson expresses concerns about O-RAN Alliance and Open RAN performance vs. costs

Vodafone and Mavenir create indoor OpenRAN solution for business customers

https://www.nokia.com/networks/radio-access-networks/open-ran/

Bank of America: OpenRAN primer with global 5G implications

Mavenir and Altiostar Collaborate to Deliver OpenRAN Radios for U.S. Market; Parallel Wireless CEO Opinion

Rakuten Communications Platform (RCP) defacto standard for 5G core and OpenRAN?

Strand Consult: Open RAN hype vs reality leaves many questions unanswered

 

Nokia, China Mobile, MediaTek speed record of ~3 Gbps in 3CC carrier aggregation trial

Nokia, China Mobile [1.] and MediaTek have announced a speed record in a test of the world’s first 3 Components (3CC) Carrier Aggregation (CA) technology in Shanghai. The converged 700 MHz/2.6 GHz network reached a peak downlink speed rate of 2.94 Gbps. The trial used Nokia’s AirScale 5G baseband and MediaTek’s Dimensity 9000 5G mobile platform on China Mobile’s 5G SA network.  The tests will continue, using China Mobile’s network in Shanghai.

Note 1. China Mobile was banned from the U.S. in 2019.

Nokia said it is the first time the n28 (700MHz band; 30MHz) and n41 (2.6GHz band; 100+60MHz) frequency bands have been successfully combined to reach 190 MHz bandwidth (n28 + n41) with carrier aggregation technology.

CA combines frequency bands for higher data rates and increased coverage, delivering superior network capacity by maximizing the spectral efficiency of 5G networks. The combination of 5G FDD and TDD bands, supplemented by carrier aggregation, can give full play to the advantages of spectrum synergy, greatly reducing the cost of network construction while improving network coverage and user experience.  The result is faster data speeds, increased coverage area, and better indoor performance.

The combination of 5G FDD and TDD bands, supplemented by carrier aggregation, augment the advantages of spectrum synergy, cutting the cost of network construction and improving network coverage and service to users.

Nokia has been a partner for over 20 years of China Mobile, which is expanding its network with the convergence of the 700 MHz and 2.6 GHz bands.

JS Pan, General Manager, Wireless Communication Technology at MediaTek, said: “Through this tripartite collaboration we have successfully demonstrated the technical advantages of DL 3CC CA using FDD+TDD. Smartphones powered by the new Dimensity 9000 flagship 5G mobile platform, and forthcoming Dimensity 5G mobile platforms, will be able to take advantage of this cutting-edge 5G connectivity feature, and MediaTek will continue to work closely with industry partners to set new milestones for 5G development.”

Ding Haiyu, Vice President of the Research Institute of China Mobile Communications Co., Ltd.), said: “China Mobile has been fully promoting the evolution and development of 5G technology. CMRI emphasizes that new technology verification provides a technical basis for the improvement of network performance and services, and forms a technical cornerstone for future network planning. China Mobile is also committed to building a 5G multi-frequency collaborative network; This 3CC CA verification can provide users with better throughput and user experience, and provide good technical foundations for new services. China Mobile is willing to work with all vendors to contribute to the 5G evolution.”

Mark Atkinson, SVP, Radio Access Networks PLM at Nokia said:  “Nokia has put a strong focus on leading in 5G Carrier Aggregation. This new speed record, using commercially available hardware and software, highlights how Nokia’s pioneering approach continues to drive important innovation in the market. 5G Carrier Aggregation is a critical technology for mobile operators around the world to maximize the impact of their spectrum holdings and deliver enhanced coverage and capacity to subscribers. Nokia will keep pushing the boundaries of 5G to deliver industry-leading performance.”

Resources:

Nokia AirScale
Nokia 5G RAN
Nokia 5G Core
Nokia achieves first 5G carrier aggregation call in standalone architecture with Taiwan Mobile
Spectrum Explained

References:

https://www.nokia.com/about-us/news/releases/2022/01/28/nokia-china-mobile-and-mediatek-achieve-new-5g-standalone-speed-record-using-carrier-aggregation-technology-in-shanghai/

Bharti Airtel conducts 5G SA trial in 700 MHz band with Nokia

Indian network operator Bharti Airtel on Thursday said it has conducted India’s first 5G SA network trial [1.] in the 700 MHz spectrum band in partnership with Nokia.  The demonstration was conducted on the outskirts of Kolkata.  It also marked the first 5G trial in the eastern India, the company said in a statement.

Note 1.  No 5G commercial service  can commence in India till the government auctions 5G spectrum which is scheduled for in the second half of 2022.  However, it has been delayed time after time after time. Airtel has been allotted test spectrum in multiple bands by India’s Department of Telecommunications for the validation of 5G technology and use cases.

Using the 700 MHz band, Airtel and Nokia were able to achieve high speed wireless broadband network coverage of 40 Km between two 5G sites in real life conditions. Airtel used equipment from Nokia’s 5G portfolio, which included Nokia AirScale radios and Standalone (SA) core network.  [Nokia provides a common core network which supports the 4G – EPC and a 5G Core.]

Randeep Singh Sekhon, CTO – Bharti Airtel said: “Back in 2012, Airtel launched India’s first 4G service in Kolkata. Today, we are delighted conduct India’s first 5G demo in the coveted 700 MHz band in the city to showcase the power of this technology standard. We believe that with the right pricing of 5G spectrum in the upcoming auctions, India can unlock the digital dividend and build a truly connected society with broadband for all.”

Naresh Asija, VP and Head of Bharti CT, Nokia, said: “5G deployment using 700Mhz spectrum is helping communications service providers across the world to cost-effectively provide mobile broadband in remote areas, where typically it is challenging for them to set up the network infrastructure. Nokia is at the forefront in the development of the global 5G ecosystem, and we look forward to supporting Airtel on its 5G journey.”

Airtel says they are “spearheading 5G in India.” Earlier this year Airtel demonstrated India’s first 5G experience over a live 4G network. It also demonstrated India’s first rural 5G trial as well as the first cloud gaming experience on 5G. As part of #5GforBusiness, Airtel has joined forces with leading global consulting and technology companies and brands to test 5G based solutions.

About Airtel:

Headquartered in India, Airtel is a global communications solutions provider with over 480 Mn customers in 17 countries across South Asia and Africa. The company ranks amongst the top three mobile operators globally and its networks cover over two billion people. Airtel is India’s largest integrated communications solutions provider and the second largest mobile operator in Africa. Airtel’s retail portfolio includes high speed 4G/4.5G mobile broadband, Airtel Xstream Fiber that promises speeds up to 1 Gbps with convergence across linear and on-demand entertainment, streaming services spanning music and video, digital payments and financial services. For enterprise customers, Airtel offers a gamut of solutions that includes secure connectivity, cloud and data centre services, cyber security, IoT, Ad Tech and cloud based communication.

For more details visit www.airtel.com

Nokia Contact:
Mohammed Shafeeq, Media Relations
Phone: +91 9167623398
E-mail: [email protected]

References:

https://www.airtel.in/press-release/11-2021/airtel-conducts-indias-first-5g-trial-in-the-700-mhz-band-in-partnership-with-nokia

https://www.nokia.com/networks/portfolio/5g-core/

https://onestore.nokia.com/asset/200999

Nokia deploys shared 5G RAN (MORAN) with SoftBank and KDDI in Japan

Nokia today announced that it has been selected by Japanese mobile operators, SoftBank Corp. and KDDI as one of the vendors to deploy Japan’s shared RAN. This deployment will deliver 5G services to both SoftBank and KDDI subscribers in the country. Nokia will install a Multi-Operator Radio Access Network (MORAN) [1.], which will allow both companies to share the RAN while keeping core networks separate. Network sharing helps support efficient RAN deployments as base station sites and infrastructure (equipment) are shared.

Note 1. In MORAN everything in the RAN (antenna, tower, site, power) except the radios are shared between two or more network operators.

The two Japanese telcos announced plans to deploy a shared network, or a Multi-Operator Radio Access Network (MORAN), in June, using equipment from Ericsson and other vendors. We now know that Nokia is one of those other vendors.  Ericsson equipment supports network sharing using both TDD (Time Division Duplex) and FDD (Frequency Division Duplex) as well as 4G/LTE and 5G New Radio (NR).  The solution consists of Ericsson Radio System  products such as RAN Compute (base band) , radio and transport – with the powerful system on a chip, Ericsson Silicon, bringing innovative various solutions such as Ericsson Spectrum Sharing and Ericsson Uplink Booster.

KDDI and SoftBank will particularly focus on quickly building robust 5G network leveraging Ericsson Radio System products and solutions for multiple-bands. Ericsson’s future-proof network-sharing solution will significantly contribute to their nationwide network deployment of 5G and beyond.   Ericsson and the service providers have completed verifications and started to deploy the solution commercially.

Under this contract, Nokia will supply its latest AirScale products including baseband and radio platforms. Nokia’s MORAN is triple mode and covers LTE, 5G as well as Dynamic Spectrum Sharing. In particular, Nokia will provide its new generation of ReefShark System-on-Chip based plug-in cards to increase the capacity of the AirScale baseband. The new ReefShark-powered plug-in cards are easily installed and simplify the upgrade and extended operation of all AirScale deployments. They also deliver up to eight times more throughput compared to previous generations. Nokia’s modular AirScale baseband will enable SoftBank and KDDI to scale capacity flexibly and efficiently and as their 5G business evolves.

MORAN is a way for mobile operators to share radio access network infrastructure, reduce their costs, expand the coverage of their networks and achieve an efficient and effective roll-out of new technologies. The RAN uses dedicated radio frequencies assigned to each service provider ensuring they maintain independent control of their resources. Nokia supports a range of network sharing solutions suiting all operating scenarios. Nokia’s flexible MORAN solution can also be utilized by mobile operators and enterprises for private networks, as well as public networks or industrial campuses.

MORAN should help Softbank and KDDI roll out 5G faster and cheaper. Costs will decrease and subscriber coverage will be quicker. They are also working together on a shared rural coverage project announced 18 months ago, that will see them share base station assets to build out 5G more quickly in rural areas.

Tomohiro Sekiwa, Senior Vice President and CNO, SoftBank, said: “In order to deliver the best 5G experience to customers nationwide as quickly as possible, SoftBank is working with KDDI to develop a shared 5G network. In this effort, a Multi-Operator Radio Access Network is a key technology that will bring various efficiencies and we look forward to the high performance of Nokia’s products in this regard.”

Tatsuo Sato, Vice President and Managing Officer, Technology Planning, KDDI, said: “We are pleased to work closely with both Nokia and SoftBank to accelerate 5G network deployment across Japan. With this Multi-Operator Radio Access Network, we anticipate delivering the superior unique experiences of 5G to customers faster.”

Tommi Uitto, President of Mobile Networks at Nokia, said: “Nokia has been at the forefront of network sharing around the world since the deployment of the world’s first commercial shared network. We have a long-standing partnership with both SoftBank and KDDI and are excited to work collaboratively with them on this project. Our latest AirScale solutions will be utilized, including the new baseband plug-in cards to add capacity where it is needed and deliver best-in-class 5G connectivity to their customers.”

It will be interesting to see the impact that this network gear sharing deal has on SoftBank and KDDI’s respective 5G businesses in the coming months and years.

Resources:

Activate massive 5G capacity with Nokia AirScale
AirScale baseband | Nokia
AirScale Active Antennas | Nokia
AirScale Radio | Nokia
Network Sharing

References:

https://www.nokia.com/about-us/news/releases/2021/10/14/nokia-deploys-shared-5g-network-with-softbank-and-kddi-in-japan/

https://telecoms.com/511728/kddi-and-softbank-add-nokia-to-shared-5g-ran-ticket

https://www.ericsson.com/en/press-releases/2021/6/ericsson-sets-up-japans-first-multi-operator-ran-with-kddi-and-softbank

Network Infrastructure Sharing and the MORAN Concept:

https://www.itu.int/dms_pub/itu-s/opb/itujnl/S-ITUJNL-JFETF.V1I1-2020-P10-PDF-E.pdf

https://www.youtube.com/watch?v=VlzuxMR2xQ4

 

Nokia and Vodafone to use machine learning on Google Cloud to detect network anomalies

Nokia and Vodafone have partnered to jointly develop a new machine learning (ML) system designed to detect and remediate network anomalies before they impact customers. Based on Nokia’s Bell Labs algorithm, the Anomaly Detection Service product runs on Google Cloud and is already being rolled out across Vodafone’s pan-European network.

In a joint statement, the partners said the ML system quickly detects and troubleshoots irregularities, such as mobile site congestion and interference, as well as unexpected latency, that may have an impact on customer service quality. Following an initial deployment in Italy on more than 60,000 LTE cells, Vodafone said it will be extending the service to all its European markets by early 2022, and there are plans to eventually apply it on the company’s 5G and core networks.

Vodafone added that it expects that around 80 percent of all its anomalous mobile network issues and capacity demands to be automatically detected and addressed using Anomaly Detection Service.

Vodafone’s deal with Nokia signed last year complements its recent six-year agreement with Google Cloud to jointly build integrated cloud-based capabilities backed by hubs of networking and software engineering expertise.

The platform, called ’Nucleus’, will house a new system ‘Dynamo’, which will drive data throughout Vodafone to enable it to more quickly offer its customers new, personalized products and services across multiple markets. Dynamo is expected to help Vodafone to tailor new connectivity services for homes and businesses through the release of new features such as providing a sudden broadband speed boost.

Capable of processing around 50 TB of data per day, Nucleus and Dynamo are considered “industry firsts”. Being built in-house by Vodafone and Google Cloud specialist teams, the project involves up to 1,000 employees of both companies located in Spain, the UK and the US.

Vodafone said it has already identified more than 700 use-cases to deliver new products and services quickly across its markets, support fact-based decision-making, reduce costs, remove duplication of data sources, and simplify and centralize operations.

Johan Wibergh, Chief Technology Officer, Vodafone, said: “We are building an automated and programmable network that can respond quickly to our customers’ needs. As we extend 5G across Europe, it is important to match the speed and responsiveness of this new technology with a great service. With machine learning, we can ensure a consistently high-quality performance that is as smart as the technology behind it.”

Amol Phadke, Managing Director, Telecom Industry Solutions, Google Cloud, said:
“We are thrilled to partner with Nokia and Vodafone to deliver a data- and AI-driven solution that scales quickly and leverages automation to increase cost efficiency and ensures seamless customer experiences across Europe. As behaviors change and the data needed for analysis increases in velocity, volume, and complexity, automation and a cloud-based data platform are now key in making fast and informed decisions.”

Anil Rao, Research Director, Analysys Mason, said: “Vodafone’s anomaly detection use case, developed in partnership with Nokia and run on Google Cloud, automates root-cause analysis for efficient network planning, optimization, and operations. This type of partnership provides a new opportunity for operators to rethink data management and increase the focus on use cases and application development.”

Raghav Sahgal, President of Cloud and Network Services, Nokia, said: “This first commercial deployment of Anomaly Detection Service with Vodafone on Google Cloud provides a great boost to customer service. It not only addresses the critical need to quickly detect and remedy anomalies impacting network performance using machine learning-based algorithms, but it also highlights Nokia’s technology leadership and the deep technical expertise of Nokia Bell Labs.”

Vodafone said it will convert its entire SAP environment to Google Cloud, including the migration of its core SAP workloads and key corporate SAP modules such as SAP Central Finance.

References:

Nokia and Vodafone Turkey trial 1st Asia-Europe Terabit IP link

Nokia today announced it has successfully completed a trial with Vodafone Turkey, linking Asia and Europe IP traffic in the first intercontinental, single 1T (terabit) clear-channel IP interface.

A milestone in Vodafone Turkey’s ongoing efforts to modernize its IP architecture, this trial comes at a particularly critical time as changing internet patterns from consumers, home workers and businesses continue to push the capacity limits of operators’ networks.

Changing internet traffic patterns from consumers, home workers and businesses are pushing the capacity limits of operators’ networks. As they look to combine gigabit capable fixed and wireless access technologies, the IP networks that carry this broadband traffic need to scale to keep up.

Through Nokia’s 7950 XRS routers powered by Nokia’s FP4 chipset, Vodafone Turkey can now scale up the capacity of its IP network by ten times, enabling the support of next-generation applications and access technologies, simplified operational complexity and cost overhead, SDN control automation, and more.

The trial is part of an ongoing modernization effort to transform Vodafone Turkey’s IP network. Nokia is delivering a multi-access mobile transport architecture that will enable the operator to evolve its transport infrastructure in a changing industry. Nokia’s 7250 IXR interconnect router and FP4-based 7750 Service Router portfolios have already been deployed for the delivery of high capacity, low latency 5G services to Vodafone Turkey’s customers. Nokia’s platforms support the features and protocols that will enable SDN control automation and optimization of applications and use cases.

Thibaud RerolleCTO, at Vodafone Turkeysaid“As we ramp up our delivery of new services, we are committed to providing the best possible quality of experience to our customers. We continue to rely on Nokia to evolve our IP network with industry-leading router innovation and technology to address our needs today and for next generation services.”

Vach KompellaHead of IP Networks Division, Nokia, said: “Today’s IP networks are expected to handle hundreds of new applications and services for millions of users. The 1T trial builds upon Nokia’s advanced routing technology and platforms to future-proof Vodafone Turkey’s IP network, which serves one of the world’s largest intercontinental markets. Together we have successfully validated Nokia’s FP4 based 1T clear channel interface across Asia and Europe.”

Resources:

Reference:

https://www.nokia.com/about-us/news/releases/2021/06/28/nokia-and-vodafone-turkey-trial-first-intercontinental-terabit-ip-link/

 

Singtel starts limited deployment of 5G SA; only 1 5G SA endpoint device; state of 5G SA?

Singtel 5G SA:

Singtel is boasting that it is the first operator to launch a 5G standalone (5G SA) network in Singapore. Their 5G SA is in  partnership with South Korean-based vendor Samsung.

The operator said it has deployed over a thousand 5G sites across Singapore in strategic locations such as Orchard Road, the Central Business District, Marina Bay, Harbourfront and Sentosa, as well as major residential areas including Sengkang, Punggol, Pasir Ris, Jurong East, Woodlands, and more.

However, it appears that service availability will be fairly limited at first. Indeed, Singtel indicated that only “selected customers” are being given “early access” to the new 5G SA network. The ONLY 5G SA device currently available is the Samsung Galaxy S21 Ultra 5G smartphone, said to be running a “Singtel-exclusive beta release of Samsung’s 5G SA software.”

“We are thrilled to introduce supercharged connectivity on Singapore’s most powerful 5G network. Our customers will be among the first in the world to enjoy the benefits that 5G SA can deliver. Wherever they are, consumers can stream 4K videos seamlessly, share favorite photos and moments with friends instantaneously, and enjoy lag-free gameplay and video conferencing. 5G SA will also fuel new innovations, being a key enabler of the digital transformation across industry sectors,” said Ms. Anna Yip, CEO, Consumer Singapore, Singtel.

Customers can register their interest at www.singtel.com/5GSAearlyaccess to be one of the first customers to experience Singtel’s 5G SA network. Customers with creative entries on how 5G will transform their lives will be selected to receive a “5G Power Up” kit that comprises a 5G SA SIM card, a Samsung Galaxy S21 Ultra 5G handset and cool accessories.

Winners who receive the 5G Power Up Kit will need to perform just TWO tasks to be eligible to exchange their test phone for a brand New Samsung Galaxy S21 Ultra 5G:

  1. Test the Samsung Galaxy S21 Ultra 5G SA-ready handset on Singtel 5G and provide feedback at singtel.com/5gfeedback
  2. Post a video of yourself on either Facebook or Instagram with a caption on how Singtel 5G transforms the way you live, work and play. Remember to make the post public, tag @singtel and hashtag #FirstonSingtel5GSA #galaxy5G #Galaxy5GxSingtel

Since September 2020, Singtel claims to have been operating Singapore’s fastest 5G NSA network under a market trial, offering 5G speeds of up to 1.2 Gbps. Within a year of receiving its 5G licence, Singtel has now turned on 5G SA and deployed over a thousand 5G sites across Singapore in strategic locations such as Orchard Road, the Central Business District, Marina Bay, Harbourfront and Sentosa, as well as major residential areas including Sengkang, Punggol, Pasir Ris, Jurong East, Woodlands, and more. It is the only telco in Singapore to roll out in-building 5G, covering popular malls such as VivoCity and Ngee Ann City, and will continue to expand its indoor 5G footprint in the coming months.

Singtel is focused on accelerating 5G innovation and 5G adoption in enterprises, launching Genie, the world’s first portable 5G-in-a-box platform and expanding its 5G ecosystem with 5G Multi-access Edge Compute trials in collaboration with Microsoft Azure and Amazon Web Services.

Samsung’s 5G Core Network has been developed and verified in a cloud native environment. Designed based on ‘Micro-services’, ‘Containers’ and ‘Stateless’ architectures,’ it will take full advantage of the cloud, acting as the key enabler for the rapid realization of 5G innovation. Samsung says it will boost 5G Core network function development and verification capabilities as well as enable automatic service upgrades and deployments for optimized operational efficiency.

Samsung vCore for 5G SA:

Image courtesy of Samsung

…………………………………………………………………………………………………………………………..

Other 5G SA networks coming to Singapore:

Antina Pte. Ltd. (Antina), the #2 mobile operator in Singapore has selected Nokia for its 5G SA network deployment.  Antina is a very new telco which was incorporated on September 3 , 2020 in Singapore. It has been operating for 256 days before that.

Nokia has already laid claim to launching the first 5G RAN and SA network for the M1-StarHub Joint Venture, although the commercial deployment of the network has not yet been announced.    

Nokia will provide equipment from its comprehensive AirScale portfolio and CloudRAN solution to build the Radio Access Network (RAN) for the 5G SA infrastructure, utilizing the 3.5GHz spectrum band. Nokia will supply 5G base stations and its small cells solution for indoor coverage, as well as other radio access products. Nokia’s 5G SA technology will provide Singaporean enterprises with the opportunity to explore multiple new use cases due to the network’s higher bandwidth, higher uplink speeds and lower-latency.

M1 and StarHub plan to jointly build a 5G network but will offer services independently.  In April 2020, the Singapore regulator awarded two 5G licenses to Singtel and Antina, the joint venture (JV) between the second- and third-largest telcos, StarHub and M1.

Singtel and the JV were assigned 100MHz of 3.5GHz spectrum, while Singtel, StarHub and M1 each received 800MHz of mmWave spectrum for “localized coverage.”

All three operators nevertheless decided to offer 5G NSA in the meantime, in order to give users an early taste of 5G services.

………………………………………………………………………………………………………………………………………..

State of 5G SA Networks:

5G SA network rollouts remain scarce and underwhelming (e.g. T-Mobile US) as most operators around the world are initially focusing on the less complicated 5G NSA.

That’s really a no brainer: 5G NSA is based on 4G LTE core network (EVC), signaling and network management, while 5G SA. 5G Core Network implementation has not been standardized and there is no definitive spec that will lead to similar implementations.  Hence, 5G SA/5G Core network is proprietary to each network operator and requires a UNIQUE 5G SA software update for each 5G endpoint (smartphone, tablet, laptop, IoT, robot, etc).  Most 5G network operators say they will implement 5G SA in a “cloud native core network,” whatever that is?

According to a March 2021 update from the Global Mobile Suppliers Association (GSA), about 68 operators in 38 countries have been investing in public 5G SA networks in the form of trials, planned or actual deployments. This compares with over 400 operators known to be investing in 5G licenses, trials or deployments, the GSA said.

………………………………………………………………………………………………………………………………

References:

https://www.singtel.com/about-us/media-centre/news-releases/singtel-first-in-singapore-to-launch-5g-standalone-network

https://www.samsung.com/global/business/networks/products/core/cloud-core/

https://www.samsung.com/global/business/networks/insights/blog/samsung-vcore-is-at-the-core-of-5g-evolution/

https://www.lightreading.com/asia/singtel-trumpets-launch-of-standalone-5g/d/d-id/769752?

Cloud Service Providers Increase Telecom Revenue; Telcos Move to Cloud Native

https://www.globenewswire.com/news-release/2021/03/22/2196543/0/en/Nokia-deploys-first-5G-standalone-RAN-Sharing-network-for-M1-StarHub-Joint-Venture-in-Singapore.html

https://www.sgpbusiness.com/company/Antina-Pte-Ltd

 

Dell’ Oro: Huawei still top telecom equipment supplier; optical transport market +1% in 2020

Huawei has increased its lead as the#1 global telecoms network equipment vendor, boosting its revenue share by a three percentage points last year, according to Dell’Oro Group.  Nokia lost one percentage point of revenue share year-on-year, as did Cisco, the latter falling to 6%. Ericsson gained one percentage point to match Nokia at 15% of the market and ZTE also saw a 1% uptick to 10% of the global telecom market.  (Please refer to chart below).

Dell’Oro Group’s preliminary estimates suggest the overall telecom equipment market – Broadband Access, Microwave & Optical Transport, Mobile Core & Radio Access Network, SP Router & Carrier Ethernet Switch (CES) – advanced 7% year-over-year (Y/Y) for the full year 2020, growing at the fastest pace since 2011.

The telecom and networking market research firm suggests revenue rankings remained stable between 2019 and 2020, with Huawei, Nokia, Ericsson, ZTE, Cisco, Ciena, and Samsung ranked as the top seven suppliers, accounting for 80% to 85% of the total market. At the same time, revenue shares continued to be impacted by the state of the 5G rollouts in highly concentrated markets. While both Ericsson and Nokia improved their RAN positions outside of China, initial estimates suggest Huawei’s global telecom equipment market share, including China, improved by two to three percentage points for the full year 2020.

Dell'Oro Group 2020 Total Telecom Equipment Market

Dell’Oro now estimates the following revenue shares for the top seven suppliers:

Source: Dell’Oro Group
Top 7 Suppliers Year 2019 Year 2020
Huawei 28% 31%
Nokia 16% 15%
Ericsson 14% 15%
ZTE 9% 10%
Cisco 7% 6%
Ciena 3% 3%
Samsung 3% 2%

 

Dell'Oro Group Telecom Equipment Revenue by Technology

 

 

 

 

 

 

 

 

 

 

 

 

Additional key takeaways from the 4Q2020 reporting period:

  • Preliminary estimates suggest that the positive momentum that has characterized the overall telecom market since 1Q-2020 extended into the fourth quarter, underpinned by strong growth in multiple wireless segments, including RAN and Mobile Core Networks, and modest growth in Broadband Access and CES.
  • Helping to drive this output acceleration for the full year 2020 is faster growth in Mobile Core Networks and RAN, both of which increased above expectations.
  • Covid-19 related supply chain disruptions that impacted some of the telco segments in the early part of the year had for the most part been alleviated towards the end of the year.
  • Not surprisingly, network traffic surges resulting from shifting usage patterns impacted the telecom equipment market differently, resulting in strong demand for capacity upgrades with some technologies/regions while the pandemic did not lead to significant incremental capacity in other cases.
  • With investments in China outpacing the overall market, we estimate Huawei and ZTE collectively gained around 3 to 4 percentage points of revenue share between 2019 and 2020, together comprising more than 40% of the global telecom equipment market.
  • Even with the higher baseline, the Dell’Oro analyst team remains optimistic about 2021 and projects the overall telecom equipment market to advance 3% to 5%.

Dell’Oro Group telecommunication infrastructure research programs consist of the following: Broadband Access, Microwave Transmission & Mobile Backhaul, Mobile Core Networks, Mobile Radio Access Network, Optical Transport, and Service Provider (SP) Router & Carrier Ethernet Switch.

…………………………………………………………………………………………….

Last week, Dell’Oro Group reported that the optical transport equipment revenue increased 1% in 2020 reaching $16 billion. In this period, all regions grew with the exception of North America and Latin America.

“Between concerns on starting new optical builds during the start of the pandemic and aggressive plans on 5G deployments that required a larger share of a service provider’s capital budget, the spending on optical transport dramatically slowed by the end of 2020,” said Jimmy Yu, Vice President at Dell’Oro Group.

“It was a really dramatic drop in optical equipment purchases in the fourth quarter. While we anticipated a slowdown near the end of the year due to concerns around COVID-19, we were surprised by a 29 percent year-over-year decline in WDM purchases in North America as well as a 12 percent decline in China. That said, there was good growth in the other parts of the world, especially Japan,” continued Yu.

Optical Transport Equipment Market
Regions Growth Rate in 2020
North America -6%
Europe, Middle East and Africa 2%
China 1%
Asia Pacific excluding China 13%
Caribbean and Latin America -14%
Worldwide 1%

About the Report

The Dell’Oro Group Optical Transport Quarterly Report offers complete, in-depth coverage of the market with tables covering manufacturers’ revenue, average selling prices, unit shipments (by speed including 100 Gbps, 200 Gbps, 400 Gbps, and 800 Gbps).  The report tracks DWDM long haul, WDM metro, multiservice multiplexers (SONET/SDH), optical switch, optical packet platforms, data center interconnect (metro and long haul), and disaggregated WDM.  To purchase this report, please email [email protected].

References:

Key Takeaways—Total Telecom Equipment Market 2020

 

Optical Transport Equipment Market Grew 1 Percent in 2020 to $16 Billion, According to Dell’Oro Group

 

Google Cloud and Nokia partner to build cloud-native 5G Core and Edge Networking

Google Cloud, Nokia partner to accelerate cloud-native 5G readiness for communication service providers:

  • Google Cloud and Nokia will jointly develop cloud-native 5G core solutions for communication service providers and enterprise customers
  • New partnership will deliver cloud capabilities to the network edge to accelerate enterprise digital transformation

Google Cloud and Nokia today announced a global, strategic partnership to bring new solutions for communications service providers (CSPs) that modernize their network infrastructures, build on a cloud-native 5G Core, and develop the network edge as a business services platform for enterprises.

The agreement, which comes three months after Nokia said it will move its on-premises IT infrastructure to Google Cloud, blends multiple technology platforms and services into a more comprehensive and integrated offering, according to the companies.

Google Cloud and Nokia will work closely to validate, optimize and evolve cloud-native network functions, and the two companies will also co-innovate new solutions that will help CSPs deliver 5G connectivity and services at scale.

Today, global CSPs can unlock new monetization opportunities by driving 5G connectivity and advanced services to enterprise customers at the network edge, to deliver new, digital experiences for consumers. Google Cloud and Nokia will create solutions that bring together Nokia’s 5G operations services and networking capabilities with Google Cloud’s leading technologies in AI, ML and analytics, running on Anthos as a platform for shifting workloads to the network edge, across public and private clouds.

As part of this collaboration, Nokia is supplying its voice core, cloud packet core, network exposure function, data management, signaling, and 5G core. This includes Nokia’s IMPACT IoT Connected Device Platform, which enables automated, zero-touch activation and allows for remote management of IoT devices, as well as Nokia’s Converged Charging solution provides real-time rating and charging capabilities that enable CSPs to capture new revenue opportunities from the 5G economy.

Google Cloud’s Anthos for Telecom will serve as the platform for deploying applications, enabling CSPs to build an ecosystem of services that are deployable anywhere, from the edge of the network, to public clouds, private clouds and carrier networks. Anthos is an open hybrid and multi-cloud application platform that offers telecommunications companies the flexibility to modernize existing applications, build new ones and securely run them on-premises and across multiple clouds.

By delivering cloud-native applications at the edge, businesses can benefit from lower latency and reduce the need for costly, on-site infrastructure, enabling them to transform their businesses in industries such as smart retail, connected manufacturing and digital consumer experiences.

In general, Google Cloud is focusing on three strategic areas to support telecommunications companies:

  • Helping telecommunications companies monetize 5G as a business services platform.
  • Empowering them to better engage their customers through data-driven experiences.
  • Assisting them in improving operational efficiencies across core telecom systems.

In December, Google Cloud announced an ecosystem of over 30 partners that will serve more than 200 partner applications at the edge. Google Cloud has more than 2,000 locations globally where it can help service providers monetize their infrastructures.

Adding Nokia as another partner will help Google Cloud modernize telcos’ infrastructures by tapping into 5G connectivity as well as cloud-native applications and capabilities from the 5G network core to the edge.

Note yet again, there are no standards for 5G Core, let alone a cloud-native version.  In the References below, we list 5G cloud-native core white papers from Nokia, Ericsson and Samsung.

5G

Supporting Quotes:

“Through our partnership we can give customers choice and simplicity in interfacing with Google Cloud and Nokia systems. In many cases, we can provide pre-integrated solutions from Google Cloud and Nokia, which may offer a time-to-market advantage and a more seamless path to 5G for communications service providers,” a Google Cloud spokesperson wrote in response to questions.  “At a high level, our approach to supporting the telecommunications industry will span multiple partnerships, geographies, and technology layers,” the Google Cloud spokesperson said.

George Nazi, VP, Telco, Media & Entertainment Industry Solutions at Google Cloud, said: “Communications service providers have a tremendous opportunity ahead of them to support businesses’ digital transformations at the network edge through both 5G connectivity and cloud-native applications and capabilities. Doing so requires modernized infrastructure, built for a cloud-native 5G core, and we’re proud to partner with Nokia to help the telecommunications industry expand and support these customers.”

Alex Choi, SVP, Strategy and Technology Innovation at Deutsche Telekom, said: “Deutsche Telekom is on a journey to transform to a new open, disaggregated and cloud-native infrastructure with an automated production model. We are therefore excited to see two innovative organizations like Nokia and Google Cloud joining forces to accelerate ecosystem innovation across critical areas like Open RAN and virtual RAN and the cloud-native 5G Core.”

Neil McRae, Chief Architect at BT Group, said: “BT is deploying cloud-native technologies across our platform, creating value for our customers and ensuring they get the best network experience in every aspect of their daily lives, whether at home, on the move or at work. The network and the services that our customers depend upon in their everyday lives can be further enhanced in terms of scalability, reliability, and experience with cloud-native technologies. BT is excited that Google and Nokia are innovating together to help accelerate new, on-demand edge and convergence solutions, creating new possibilities for consumers and enterprises.”

Ron Haberman, CTO of Cloud and Network Services at Nokia, said: “In the past five years, the telecom industry has evolved from physical appliances to virtual network functions and now cloud-native solutions. Nokia is excited to work with Google Cloud in service of our customers, both CSPs and enterprise, to provide choice and freedom to run workloads on premise and in the public cloud. Cloud-native network functions and automation will enable new agility and use-cases in the 5G era.”

References:

https://www.globenewswire.com/news-release/2021/01/14/2158600/0/en/Google-Cloud-Nokia-partner-to-accelerate-cloud-native-5G-readiness-for-communication-service-providers.html

Nokia 5G Cloud-Native Core

https://www.sdxcentral.com/articles/news/nokia-argues-cloud-native-is-essential-to-5g-core/2019/11/

https://www.sdxcentral.com/articles/news/nokia-links-cloud-native-5g-services-with-google-cloud/2021/01/

Nokia Cloud Packet Core

Google Cloud’s telecommunications Strategy

https://www.ericsson.com/en/digital-services/core-network-automation/guide

https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/cloud-native-5g-core/Cloud-Native-5G-Core-Samsung-5G-Core-Volume-2.pdf

Nokia, Elisa and Qualcomm achieve 5G speed record of 8 Gbps in Helsinki, Finland

Elisa, Nokia and Qualcomm Technologies announced that they reached a record 5G speed of 8 Gbps on a commercial 5G network in Finland, serving two 5G mmWave devices. The lightning fast speed was showcased at Elisa’s flagship store in Helsinki. The service is expected to be deployed in 2021.

The speed was achieved using Nokia 5G mmWave technology and Qualcomm Technologies’ 5G smartphone form factor test devices on Elisa’s commercial 5G network. The 5G base station used two Nokia AirScale radios, each using 800 MHz of commercial millimeter wave 5G spectrum at 26 GHz. They provided connectivity to two 5G smartphone form factor test devices run by a Qualcomm Snapdragon X55 5G Modem-RF System with Qualcomm QTM525 mmWave antenna modules. Each device reached 4 Gbps peak speeds from the base station.

The fast 5G bit rate will support new low-latency, high-bandwidth services such as rapid video and game downloads, as well as mission-critical or virtual reality (VR) and augmented reality (AR) applications. It will enable remotely controlled devices for industrial needs and VR/AR large stadium concert broadcasts. It will allow enhanced fixed wireless access connectivity, too, as an alternative to fiber optic broadband.

Sami Komulainen, Executive Vice President, Production at Elisa, said: “This is an important development and another step in our efforts to bring the fastest speeds and best 5G experiences to our customers. Elisa was the first in Finland and amongst the first in the world to deploy 5G. Reaching 8Gbps is a natural step in our 5G development and we want to explore the possibilities 5G offers and push the technology further to benefit our customers.”

Tommi Uitto, President of Mobile Networks at Nokia, commented: “We are proud to work with our partners on this important and significant achievement that will deliver incredible 5G experiences to people and businesses in Finland. This is another milestone in the development of 5G services and demonstrates the capacity of our commercially deployed 5G solutions.”

Enrico Salvatori, Senior Vice President and President, Qualcomm Europe/MEA, said: “We are incredibly proud of this collaboration on this landmark event, which represents a significant milestone for 5G mmWave. Qualcomm Technologies’ research and development efforts to drive the next generation of wireless connectivity, along with our work with Elisa and Nokia, has made this milestone a commercial reality. The throughputs achieved today show the true potential for mmWave deployments and we are excited to continue collaborating with industry leaders to make 5G mmWave a commercial reality.”

Resources:

About Elisa:
Elisa is a pioneer in telecommunications and digital services. We serve approximately 2.8 million consumer, corporate and public administration organisation customers, and have over 6.3 million subscriptions in our extensive network. Cooperation with Vodafone and Tele2, among others, enables globally competitive services. Our core markets are Finland and Estonia, and we also provide digital services for international markets. Elisa’s shares are listed on the Nasdaq Helsinki. In 2019, our revenue was EUR 1.84 billion euros, and we employed 4,900 people. As a responsible Finnish market leader, our operations are guided by continuous improvement. We will be a carbon neutral company from 2020 onwards. Further information on www.elisa.com, Facebook (@elisasuomi) and Twitter (@ElisaOyj)

About Nokia:
We create the technology to connect the world. Only Nokia offers a comprehensive portfolio of network equipment, software, services and licensing opportunities across the globe. With our commitment to innovation, driven by the award-winning Nokia Bell Labs, we are a leader in the development and deployment of 5G networks.
Our communications service provider customers support more than 6.4 billion subscriptions with our radio networks, and our enterprise customers have deployed over 1,300 industrial networks worldwide. Adhering to the highest ethical standards, we transform how people live, work and communicate. For our latest updates, please visit us online www.nokia.com and follow us on Twitter @nokia.

Media Inquiries: Email: [email protected]

About Qualcomm:
Qualcomm is the world’s leading wireless technology innovator and the driving force behind the development, launch, and expansion of 5G.  When we connected the phone to the internet, the mobile revolution was born. Today, our foundational technologies enable the mobile ecosystem and are found in every 3G, 4G and 5G smartphone. We bring the benefits of mobile to new industries, including automotive, the internet of things, and computing, and are leading the way to a world where everything and everyone can communicate and interact seamlessly.
Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and substantially all of our products and services businesses, including our QCT semiconductor business.

References:

https://www.globenewswire.com/news-release/2020/11/18/2128824/0/en/Nokia-Elisa-and-Qualcomm-achieve-5G-speed-record-in-Finland.html