SCWS Americas: Verizon and AT&T 5G Roadmaps Differ on FWA vs mobile “5G”

Verizon has no plans for linear or on-demand (or any other form) of pay TV for its “5G” FWA (Fixed Wireless Access) based residential/Verizon Home broadband service, according to  Bill Stone, the company”s VP of technology development and planning.  Stone stated that in a question from this author (during the Q&A session after his second presentation) at the excellent SCWS Americas conference in Santa Clara, CA on December 5, 2018.  Instead, Verizon has a partnership with YouTube TV (first three months free) to provide OTT video to its FWA customers.   Verizon Home customers get a free Apple TV 4K or Google Chromecast Ultra (Internet TV adapters with HDMI connection to the customer’s TV) when they sign up for 5G Home service.

Stone also said that Verizon’s FiOS will continue to offer higher speeds than its 5G Home service, which will transition from its proprietary “5G TF” spec to 3GPP release 15 5G NR NSA (non stand alone) in the near future.   He told me privately that any wireless base station vendor that supports 5G NR would be able to interoperate on the carrier’s 5G FWA network (we don’t think so for many reasons).  Verizon’s 5G Home service is currently available in Houston, Indianapolis, Los Angeles and Sacramento.

Stone noted with pride that the mega carrier continues to bolster its 4G LTE network with new technologies.  “LTE has a lot of runway left,” Bill said to the audience.

Verizon currently says that customers of its 5G Home service will receive download speeds of at least 300 Mbps.  A video was shown of satisfied customers who all got download speeds of 800 Mbps or higher.  The mega carrier said that speeds can range up to 1 Gbps depending on customers’ location in relation to the towers for the service.

Verizon currently charges new customers $70 per month for 5G Home service, but only $50 per month for existing customers (with 1st three months free) who also subscribe to the carrier’s $30/month mobile data plan.  Voice is offered along with high speed Internet access, but no pay TV is available as with FiOS.

“The peak data rates here in millimeter-wave will definitely increase,” Stone told the audience.  Verizon currently runs its 5G Home service in its 28 GHz licensed spectrum in 400 MHz channels. But he said the carrier has the ability to increase that spectrum allotment to 600 MHz and 800 MHz channels (Verizon owns huge amounts of millimeter-wave spectrum via its purchases of XO and Straight Path). Stone explained that expanding the service’s spectrum channels would both increase user speeds and increase Verizon’s network capacity.  Verizon will move from 400 MHz to 800 MHz, and that will result in the speeds and capacity available  would double as a result.

Currently, the antennas and receivers for Verizon’s Home broadband service are installed by “white glove” professional technicians.   In the future, the carrier is planning to offer a self-installation option for its 5G Home service.  “Over time the goal is to introduce the ability to drop ship equipment that the customer can install on their own,”

Stone said, without providing a timeline for such a move. tone touched on several other data points for its FWA home broadband service:

  • 50% of Verizon’s 5G Home customers do not subscribe to the operator’s mobile service.
  • The service can transmit 1 Gbps downstream up to 3,000 feet.
  • The millimeter-wave service works in conditions including rain, snow and non-line-of-sight scenarios. Indeed, Stone said some transmissions work better in non-line-of-sight scenarios than when customers are within sight of the tower, due to the fact that millimeter-wave transmissions can reflect off various objects in order to reach their intended destination.
  • Verizon’s 5G Home customers are switching to the carrier from a variety of other service providers, though no details were provided.
  • Verizon ultimately expects to expand 5G Home to 30 million households at some unspecified time in the future, though Dunne said the carrier may revisit that figure as the company’s rollout progresses.
  • Verizon won’t build any more locations with its 5GTF equipment, and will instead wait for 3GPP release 15 5G NR equipment to become available before expanding to additional neighborhoods and cities.  However, the implementation of 5G NR by vendors will initially be non stand alone (NSA), which means its dependent on a LTE core network and LTE signaling.  That may differ amongst wireless base station vendors as will the frequencies used for different 5G NR carrier networks.
  • Verizon is making significant progress toward implementing vRAN technology on its 5G network, working with its vendors—including Ericsson, Samsung and Nokia—to virtualize the lower layers of its network in addition to the upper layers. The process of virtualizing the baseband functions in the RAN is part of a broader trend in the wireless and wider telecom industry in which operators are increasingly looking to move away from expensive, dedicated hardware from traditional suppliers and toward general-purpose compute servers running (mostly) open source software.
  • Verizon remains interested in providing edge computing services, services he said the operator could sell to companies looking to provide offerings ranging from drones to autonomous vehicles.  Verizon’s efforts in edge computing stem from the carrier’s moves to densify its network and to virtualize parts of its network functions. Those efforts, Stone said, would create a foundation for Verizon to eventually run edge computing sevices for third parties.

5G Home is one of many services Verizon plans to offer via 5G network technology with mobile 5G (again, based on 3GPP release 15 “5G NR”o NSA) being the next “5G” offering.  When mobile “5G” is deployed in the 11st half of 2019, the Motorola moto z3 smartphone, paired with the 5G moto mod and a Samsung 5G smartphone will be available.  So will an Inseego 5G hotspot that can access Verizon’s mobile network.

Addendum:  5G is one network, multiple use cases, Verizon CEO says

Last week at the UBS Global Media and Communications Conference, Verizon CEO Hans Vestberg touted the carrier’s 5G home residential broadband service as complementing its wired Fios offering while extending the ability to provide a wireless alternative to home connectivity. While the fixed wireless access service is only available in four markets, the carrier said half of the customers are new to the company.

In a discussion with John Hodulik of UBS Investment Bank and HSBC analyst Sunil Rajgopal, Vestberg said 5G Home comes with a guaranteed 300 Mbps but its millimeter wave spectrum can support up to 800 Mbps or 900 Mbps.

“It’s a totally different way to doing broadband, meaning, instead of having a cord into the house, you have a wireless wave into the house, but the experience is the same in the house. And I think that’s a big opportunity for us. We have one footprint of Home, and that’s the Northeast where we have our Fios footprint. For the rest of the country, we don’t have it. So of course, we see that as an opportunity.”

…………………………………………………………………………………………………………………………………………………………………………………………………….

In a SCWS Americas keynote speech, title “Building our 5G network,”  Al Burke, AT&T Assistant Vice President – RAN Hardware and Software Development, described the progress the carrier has made in upgrading its network for 5G.  The key points he made were:

  • 5G will facilitate and support new applications such as VR/AR, remote surgery (Bill said he doesn’t want to be one of the first patients), connected cars, etc.
  • Small cells will be an integral part of 5G networks and “bring them to fruition”
  • By the ned of 2017, 55% of AT&Ts network functions were virtualized (I take that to mean they were implemented as software running on commodity compute servers)
  • There have been huge shifts in AT&Ts network in the last few years:

1.  From hardware to software implementations (e.g SDN, NFV);

2.  From centralized to decentralized control (e.g. EDGE computing)

3.  From observation (of network events, alerts, alarms) to insight via AI/ML (e.g.AT&T’s INDIGO)

  • Open RAN (ORAN) is the way to move forward.  Via disaggregation of RAN functions with well defined interfaces, ORAN is “open, modular, enables automation, and is lower cost.  ORAN results in interchangeable network modules (from different vendors) vs vendor proprietary equipment.

AT&T’s 5G Roadmap (only mobile 5G was shown on Al Burke’s slide – nothing on fixed 5G):

  • 2019:  5G NR access with LTE Core network and LTE Access (=signaling?).   The spectrum for AT&Ts initial mobile 5G rollout was not disclosed, but many believe it will be mmWave.
  • 2020-2022+:  5G NR access with 5G Core network (3GPP Release 16 SA or IMT 2020?); also LTE Core with LTE Access
  • 2019-2022+:  mmWave NR : Evolution to Ultra High Speed and lower latency
  • End of 2019-2022+: (unspecified time frame?), AT&T will provide sub 6 GHz 5G coverage in the U.S. speed and latency; dedicated & shared spectrum (LTE-NR-Coexistence)

…………………………………………………………………………………………………………………………………………………………………………………………………………….

When AT&T introduces its “5G” FWA residential service it will be based on LTE, according to Mr. Burke.  In answer to a question from this author during the Q&A session, he said it would start as LTE but then transition to 5G NR based FWA.  The spectrum to be used was not revealed, but you can assume it will be mmWave (like Verizon’s 5G Home).

Author’s Closing Comments:

A claim we’ve heard before (by Ericsson and Vodafone), but don’t believe:  LTE network and terminal equipment will upgrade to 5G NR via “only a software upgrade.”As noted many times by this author and others,

AT&T has repeatedly stated they would roll out “standards based 5G” in 12 cities by the end of 2018 (they have only 3 weeks to fulfill that promise) and 19 cities in 2019.  Some of the cities identified by AT&T for the 2018 launch include Houston TX, Dallas TX, Atlanta TX, Waco TX, Charlotte NC, Raleigh NC, Oklahoma City OK, Jacksonville FL, Louisville, KY, New Orleans LA, Indianapolis IN, and San Antonio TX.

How long can AT&T claim their “5G” network is standards based when they only support 3GPP release 15 “5G NR” NSA access with a LTE core network and LTE signaling?  The ONLY 5G RAN/RIT standard is IMT 2020 which won’t be completed till the end of 2020.

 

 

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..

Fierce Wireless writes about what to expect from AT&T’s 5G mobile service.  We’d like to know How much will it cost? And who will subscribe when only a WiFi hotspot with 5G backhaul is offered?

 

Verizon’s “5G” FWA Progess in Sacramento vs Huawei’s Home Broadband System

Verizon’s “5G” FWA Progresses in Sacramento, CA:

Sacramento Chief Innovation Officer Louis Stewart said in an interview with Government Technology that the California state capital became one of the first four cities nationally to debut Verizon’s (proprietary) “5G” fixed wireless access (FWA) network, along with Los Angeles, Houston and Indianapolis on October 1st.  The purpose of this and other FWA broadband networks is to deliver residential triple play services.

More “5G” offerings should arrive in Sacramento during 2019:

• Sacramento is on schedule to be one of the nation’s first 11 cities that will have the infrastructure needed to underpin “5G” and a connected future.  That includes: in-ground fiber to link light poles and traffic signals and materials to support free Wi-Fi via kiosks in 27 parks. Much of this should arrive in early 2019, the innovation officer said, calling the digital kiosks “not on hold indefinitely,” implying “the conversation is still happening.”

• Emilie Cameron, public affairs and communications director for Downtown Sacramento Partnership (DSP), the nonprofit that manages the assessment for the property-based improvement district, said the city reached out to the group in late 2017 with “high-level” information about the Verizon partnership. But she described the conversation as “conceptual.” She described the response to the kiosks as generally positive but agreed district members are interested to learn where the devices will be located, what they’ll look like and what content and services will be offered. “You don’t want anything to be in conflict with the streetscape,” Cameron said.

• Stewart said a great deal of coordination must happen to enable deployment of infrastructure and services in 2019, which he described as “a fairly heavy lift.” Sacramento, the innovation executive said, wants to ensure the project is “done right” for the community whether in the parks or in the downtown corridor, to enable “the right user experience.” Much content development for the kiosks’ digital displays remains to be completed, he said, but officials are currently in the “ideation phase.”

“If the future that everybody’s looking at is how do you build, ultimately, a connected city, kiosks fit into that, whether it be providing additional connectivity to connect the cars and autonomous cars as they essentially geolocate, driving down the streets. They could provide other smart city solutions, be they charging stations or power down the road, in some kind of way,” Stewart said.

……………………………………………………………………………………………………………………………………………………………………….

Huawei’s 5G Home Broadband System:

Huawei and U.K. carrier Three showcased a 5G home broadband demonstration using Three’s 100 megahertz of C-Band spectrum last week at the Huawei’s Global Mobile Broadband Forum in London, which IEEE Techblog has been reporting on this week and last.

The demonstration leveraged Huawei’s latest 5G-based home broadband routers to allow forum attendees to experience ultra-high-speed 5G broadband services such as cloud gaming and 4K video streaming, Huawei said.  The world’s #1 network equipment vendor highlighted that the 5G broadband service will deliver a maximum download speed of 2 Gbps, with an average of 1 Gbps for a single user.

Huawei and Three U.K. carried out a pre-commercial network test of this technology earlier this year. The two companies plan to carry out further 5G service tests in the U.K. in the coming months, which are expected to be released to the public in densely-populated urban areas and train stations, paving the way for the full commercial use of 5G networks in 2019.

“The 5G trials we carried out today demonstrate the opportunity this technology brings to the home broadband market. Huawei will continue to work with Three UK to bring customers more market-leading commercial applications of 5G,” said Yang Chaobin, President of Huawei 5G Product Line.

“Huawei is the only true 5G supplier right now,”  said Neil McRae, chief architect at British Telecom. “Others need to catch up. I’ve been to Shenzhen recently and there’s nowhere else in the world where you can see” the kind of 5G technology developments that Huawei has achieved. Other suppliers need to learn from Huawei. Others are held back by old telco issues,” McRae added.

In the UK, Three, EE and BT have all said they’re launching a 5G network in some form in 2019 (that’s 1 year before IMT 2020 standard will be completed and with no standards for virtual RAN, Cloud RAN, network slicing, scheduling, OA&M, etc).  EE has announced which cities will be first to get its 5G service.

………………………………………………………………………………………………………………………………………………………….

Analysis:

Some pundits say that 5G FWA networks have the potential to complement fiber to the home (FTTx) deployments by providing an alternative “last-mile” solution consumer and business services. In both urban and suburban regions, the ability to deploy 5G FWA will help reduce costs for operators and increase accessibility of high speed broadband for residential FWA customers.  5G FWA networking equipment also requires a much smaller footprint than traditional mobile networks, reducing requirements for government approvals of new tower locations.

Market research firm Ovum has this assessment of Huawei’s “5G” FWA strategy:

Huawei has gradually built its WTTx fixed wireless access (FWA) business into a key component of its wireless broadband portfolio. At the Huawei Global Analyst Summit earlier this month, the vendor reported significant successes for WTTx and high expectations for its future development. Although still small in scale relative to mobile broadband services, the FWA market is experiencing rapid growth, even outpacing FTTx and copper for new subscription additions in many world markets, according to Huawei’s figures.  WTTx is central to Huawei’s wireless broadband strategy.

Even though other large network equipment vendors including Nokia and Ericsson provide their own fixed wireless broadband solutions, Huawei is arguably more aggressive in its public backing of FWA. Huawei’s work with WiMAX has given it more experience with fixed wireless and it has existing FWA operator relationships it can leverage. Huawei’s FWA strategy also differs from that of competitors such as Nokia in that it places WTTx as part of its mobile products line rather than part of its fixed broadband offering.

Huawei already claims a substantial installed base for its WTTx fixed wireless offering, with 200 WTTx commercial networks in service and 50 million households connected as of end-2017. The vendor says 82 operators launched WTTx for home broadband in 2017 alone, and it expects to see a surge in demand over the next two years.

The future growth of FWA will depend on a number of factors, including the ability to deliver efficient and sustainable home broadband services to underserved and unconnected communities more economically than fiber alternatives. Huawei has identified the following four major deployment models where it believes WTTx can provide a fiber-like experience to complement fixed broadband:

  • As a home fixed broadband service for mobile operators to deliver triple-play services

  • As a complement to wireline broadband services for converged operators

  • As a DSL upgrade for wholesale broadband providers

  • As a 5G-oriented fixed wireless broadband service.

Along with a maturing WTTx ecosystem, a number of factors support the expansion of fixed wireless services. On the network side, spare cell capacity arising from the uneven traffic distribution associated with smartphones can be used more efficiently by operators introducing FWA services. On the equipment side, advances in self-install CPE, along with performance and efficiency gains from the incorporation of multiple receiver and antenna technologies and the use of massive MIMO and 256QAM at the eNodeB, is helping to deliver a high-capacity equivalent to evolved LTE. This will support the evolution toward 5G FWA.

Even so, the business case for FWA is likely to be challenging, particularly in emerging markets where population densities and ARPU are low. Huawei believes governments and regulators can promote the benefits of universal network coverage by providing more practical encouragement and financial stimulus to local mobile operators. It offers a business operation and management platform as part of its WTTx pre-sales service suite, which helps operators evaluate the potential opportunity for a fixed wireless solution based on aspects such as network capacity trends and coverage gaps in existing FTTx and wireline networks.

Ultimately, the success of fixed wireless broadband will depend on the scope it provides for operators to monetize services.

Related Content:

Verizon CFO: “5G” Home Fixed Wireless Exceeds Promised Speeds; Partnerships with Video Content Providers

Verizon is pleased with the performance of its fixed wireless network, “5G Home,”* which has offered better speeds than promised in “a lot of cases,” said Chief Financial Officer Matthew Ellis. Although the fixed wireless service was introduced in four initial markets using non-standard equipment, Verizon plans “to transition to the global standard (?) as soon as equipment is available,” Ellis said.  Later, Verizon expects to offer Verizon 5G Home outside its traditional local service territory.

Ellis made his comments at the Morgan Stanley European Technology, Media & Telecom Conference in Barcelona.
………………………………………………………………………………………………………………………………….

* IMPORTANT NOTE: As we’ve repeatedly explained, Verizon’s “5G” fixed wireless network is based on a proprietary spec. More importantly there is no standard 5G fixed wireless access because it is not being considered (i.e. no use case) for ITU-R IMT 2020. There are NO FUTURE STANDARDS imminent for 5G fixed wireless access. Instead, ALL SO CALLED 5G FIXED WIRELESS OFFERINGS ARE PROPRIETARY WITH NO INTEROPERABILITY!
………………………………………………………………………………………………………………………………
“The product works exactly as expected,” said Ellis in a transcript from the conference published by Seeking Alpha. “And in some cases – a lot of cases – at speeds higher than the minimums that we promised in the commercial offerings.”

When Verizon 5G Home was announced, the company said the offering would support typical network speeds around 300 Mbps and up to 1 Gbps peak speed. The service sells for $50 monthly with a qualifying Verizon Wireless service or $70 a month for non-Verizon Wireless users.

Verizon has said that it sees a potential market of 30 million homes for Verizon 5G Home, and although some industry observers see that as overly optimistic, Ellis said “we certainly still see line of sight to getting to 30 million households in the U.S. with that product over the next few years.”

Ellis said Verizon launched the service initially in only four markets because the equipment the company will use initially to support the offering is not based on standards. The company made the decision to launch with non-standard equipment in order to get to market quickly.

“We want to transition to the global standard as soon as equipment is available,” he said.

In 2019, he said, “you’ll see more activity… than this year” involving Verizon 5G Home. A big piece of deployment plans is “getting the fiber in the ground in a number of cities to hook up the 5G network.”

The fiber deployment is particularly important considering that Verizon is deploying 5G in the 28 GHz band – a strategy that will help maximize bandwidth but over relatively short distances, requiring extensive backhaul infrastructure. As equipment becomes available, Verizon’s 5G network will support both fixed and mobile service, and backhaul costs will be shared across both services, thereby enhancing the business case for both offerings, Ellis noted.

“You should assume we’ll start in a city in the central area, and once we get enough scale in that city, we’ll launch the network in that city and then the build moves out within that city limit into suburban areas and so on,” he explained. “And as we do, we’ll just add homes toward the 30 million number.”

Ellis offered some commentary about Verizon’s decision to offer a YouTube over-the-top video service to 5G Home customers. He noted that when Verizon launched FiOS fiber broadband service, the decision was made to curate a traditional pay-TV offering to be delivered over the same platform. But as content costs have outpaced what Verizon can charge for video service, the company has moved away from that model.

With Verizon 5G Home, he said, “we felt the right approach . . . was to say ‘there are some viable OTT offerings – and if you’ve got a great broadband experience, which is what our 5G Home product is, OTT is the right way to deliver the content that the customer wants to have.’”

………………………………………………………………………………………………………………………………………………………………….

From the Wall Street Journal:  Banking on 5G

Verizon’s biggest transaction to date was the $130 billion purchase of full control of Verizon Wireless in 2013. Executives have stressed to analysts and investors in recent months that they are focused primarily on building out the carrier’s 5G network—which they say will generate additional revenue by powering new technology used in factories, hospitals and cities.

Verizon explored, but didn’t ultimately pursue, acquisitions of companies such as CBS Corp. , and this year told investors it isn’t interested in buying a content creator. Instead of acquiring content, it is offering its first 5G customers live channels, movies and shows through streaming partnerships with Apple TV and Google’s YouTube TV.

The carrier is in discussions with Apple and Google about partnerships that could extend the video services to a broader group of its cable and wireless subscribers and include some content from Verizon’s Oath digital-media unit, according to people familiar with those discussions. Those plans could be announced as soon as this month, the people said.

Sajod Moradi, a senior credit analyst at Macquarie Investment Management, says Verizon’s partnerships will allow it to benefit from expanded content offerings without creating the pressure to generate excess cash flow to pay down debt.

Verizon CEO Hans Vestberg said in a recent interview the carrier was exploring ways to apply 5G technology to the media, augmented-reality and virtual-reality brands within the unit.

References:

https://seekingalpha.com/article/4222109-verizon-communications-inc-vz-presents-morgan-stanley-european-technology-media-and-telecom?dr=1

https://www.telecompetitor.com/cfo-verizon-5g-home-fixed-wireless-exceeds-promised-speeds/

https://www.wsj.com/articles/at-t-and-verizon-pursue-different-paths-into-the-future-1541999131

Comcast claim: #1 Gigabit Service Provider in the U.S. but what about “5G” BWA?

Comcast says its Xfinity Gigabit Internet and Comcast Business Gigabit services are now available to nearly all of the 58 million homes and businesses the company’s infrastructure passes in 39 states and the District of Columbia (it’s not available in Santa Clara, CA where top downstream speed is 400M bits/sec). That makes the cable MSO the largest provider of gigabit Internet service in the U.S. based on the number of potential homes passed.

Gigabit Internet service is a residential XFINITY Internet service that delivers download speeds of up to 1 Gbps and upload speeds of up to 35 Mbps to customer homes via Comcast’s next technology DOCSIS 3.1 Hybrid Fiber-Coax (HFC) network.  Gigabit Pro is a newer ultra-fast tier  delivered via a fiber-to-the-home solution and offers symmetrical upload/download speeds of up to 2 Gbps.

Comcast notes it has increased speeds 17 times in the last 17 years and that the capacity of its broadband network has doubled every 18-24 months. The company uses Xfinity xFi to give customers control over their internet; xFi is a digital dashboard that allows users to personalize, monitor, and manage WiFi connected devices inside the home or business.

“Comcast continues to offer an unmatched Internet experience that combines gigabit speeds with wall-to-wall WiFi, personalized tools and controls, and enough capacity to stay ahead of tomorrow’s innovations,” said Dana Strong, president of Consumer Services, Comcast. “We’ve built an innovative high-speed data platform that combines speed, coverage and control features and really sets our broadband experience apart from the competition.”

“One of the ways that we compete, of course, is ensuring that we’ve got the fastest and the most reliable network,” Matt Strauss, executive vice president of Xfinity Services at Comcast, told Fortune. “What’s partly behind the announcement is reinforcing that now we have one gig deployed across our entire footprint.”

Comcast started deploying gigabit service in earnest about three years ago. The company, which has 24.4 million total home broadband customers, wouldn’t say how many people have signed up so far, disclosing only that 75% of all its customers now receive speeds of 100 megabits/sec or higher.

However, a Morgan Stanley survey released on Thursday said that only a tiny fraction of U.S. households—3% of cable Internet customers nationwide—have 1 gigabit/sec speeds or higher.

But 1 GB speeds may gain in popularity in the future. While a typical high-definition movie file is about 3 GB or 4 GB, a growing number of movies are available in 4K, for which files sizes can exceed 100 GB.

………………………………………………………………………………………………………………………………………………………………………………………………

The top two U.S. fixed line telecom carriers Verizon and AT&T are just starting to introduce competing home Internet services with new “5G” (proprietary) fixed broadband wireless access (BWA) technology.  Those “5G” BWA services are 10 to 40 times faster than current 4G LTE wireless networks, which are generally NOT used for BWA.  Those two mega carriers along with Comcast are ranked among the best ISPs.

Google Fiber may not be too far behind in it’s use of fixed BWA technology to deliver triple play residential services.  Alphabet, Google’s parent company, has put Google Fiber projects on hold in San Jose, Portland, and California. Google states that the move to wireless is inevitable, it will not neglect existing markets and will continue signing up new customers with wireless instead of fiber. Plans are underway to provide cities such as Dallas, Los Angeles, and Chicago with wireless internet service. Wireless technology is less expensive as it does not require labor-intensive constructions, the issues with the telephone owners, current copper and fiber providers and much cheaper to roll out.

In October 2016, Google bought Webpass, a company that specializes in the provision of wireless internet that at speeds of 1GBps at around $60. Webpass uses antennas on a building’s rooftops to provide internet connections to both businesses and residences. Unlike in conventional ISPs where you would need to have a modem, with Webpass you only need to have a router where you can plug in an Ethernet cable and distribute the internet to your office or residence.

https://www.lightwaveonline.com/articles/2018/10/comcast-were-the-largest-us-gigabit-broadband-provider.html

http://fortune.com/2018/10/18/comcast-declares-victory-in-gigabit-home-internet-race/

https://hothardware.com/news/comcast-gigabit-internet-rollout

https://medium.com/@artiedarrell/fiber-no-more-google-fiber-is-switching-to-wireless-57e871ee8bc4

https://www.reviews.org/internet-service/best-internet-service-providers/

http://www.thurstontalk.com/2018/10/22/comcast-now-nations-largest-provider-of-gigabit-internet/

Verizon & Nokia demo “5G NR” transmission on a “commercial network”

Verizon and Nokia have completed the first over-the-air, end-to-end “5G NR” data transmission on a commercial 3GPP 5G New Radio (NR) network, the companies announced. The transmission was between commercially deployed Nokia radio equipment and Verizon’s 5G network core and millimeter wave spectrum to a Nokia test van parked in the downtown area of Washington, D.C.

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..

Editor’s Note: 

“5G NR” is based on 3GPP release 15 spec, whereas it’s 3GPP release 16 (with parts of release 15) which will be submitted as a candidate IMT 2020 Radio Interface Technology (RIT) at the July 2019 ITU-R WP 5D meeting. Also, we don’t consider an end to end transmission using only Nokia endpoint terminals a “commercial network,” which is one in which there are many paying customers and endpoint terminals from several vendors (not just Nokia).

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………..

Verizon and Nokia said that the transmission was another of their ongoing demonstrations of 5G NR technology. They expect to launch commercial 5G mobile service in 2019. In June, the two companies completed a series of outdoor data sessions over the 5G NR standard, and used multi-carrier aggregation to boost those signals into the gigabit-per-second range. Last month, Verizon and Nokia said they completed the first successful transmission of a 3GPP NR 5G signal to a receiver in a moving vehicle.“The cadence and frequency of these significant milestone achievements from Verizon and Nokia show just how quickly we’re taking the promise of 5G technology from the lab to the field and to the marketplace where our customers will ultimately use this revolutionary technology,” said Bill Stone, Verizon vice president, technology development and planning, in a prepared statement. “We said Verizon will be first to 5G, and our latest milestone moves us closer to fulfilling that promise.”

“Nokia and Verizon have had a tremendous summer for 5G innovations and technology advancements,” said Marc Rouanne, Nokia president mobile networks, in a prepared statement. “We are thrilled to be on the forefront of this new technology, helping Verizon make yet another significant stride towards becoming the first-mover to the market.”

The announcement followed Verizon and Nokia last month transmitting a pre-standard 5G signal between two radio sectors to a moving vehicle, calling the successful trial a “major 5G milestone”.

Verizon earlier announced it would launch 5G residential broadband service in Los Angeles, Sacramento, Houston and Indianapolis, in the second half of this year (based on Verizon’s proprietary spec), to be followed by a mobile 5G solution.  That’s all before the ITU-R IMT 2020 standards are finalized in late 2020.

References:

https://www.verizon.com/about/news/another-verizon-first-verizon-and-nokia-complete-first-over-air-data-transmission-commercial-5g

https://www.telecompetitor.com/verizon-claims-first-5g-nr-data-transmission-on-a-commercial-network/

https://www.zdnet.com/article/verizon-trials-5g-in-washington-dc-with-nokia/

 

Verizon & Nokia complete 3GPP NR vehicle handoff

Verizon and Nokia announced they were able to achieve a key milestone on the road to 5G: handing off a signal seamlessly to a vehicle traveling between two radio sectors.  The test took place at Nokia’s Murray Hill, N.J., campus. A data transmission at 28 GHz was sent from two 3GPP New Radio (NR) radios on a Nokia building to a vehicle outfitted with a receiver and equipment to measure transmission statistics. The vehicle traveled between the two radios, achieving seamless NR Layer 3 3GPP-compliant mobility hand off of the signal between the two sectors, intra-gNB and inter-DU, according to the companies.

5G Mobility Demo

Verizon said that the call mobility test involved a data transmission at 28 GHz that was sent from two 3GPP compliant NR radios on Nokia’s building, to a vehicle that had a receiver and test equipment to measure transmission information.

“The vehicle traveled between the two radios, achieving seamless 5G NR Layer 3 3GPP-compliant mobility handoff of the signal between the two sectors,” Verizon said, noting that these were intra-gNodeB and inter-distributed unit handovers.

“Unlike some of the incremental 5G technology announcements we’ve seen lately, tests like the one we conducted are significant advancements in the development of 5G technology,” said Bill Stone, vice president, Technology Development and Planning for Verizon, in a press release. “By taking these tests out of the lab and into the field, we’re replicating the experience users will ultimately have in a 5G mobility environment,” he added.

“We are pleased to showcase the acceleration of the mobile capabilities in 5G,” said Marc Rouanne, president, Mobile Networks, Nokia, in the release. “Enhanced mobile broadband is one of the first services being delivered on Nokia’s end-to-end 5G Future X portfolio. As a result, we can help our customers meet their early 5G deployment schedules and initial coverage demands.”

Verizon plans to be the first to launch 5G residential broadband service in four markets this year:  Los Angeles, Houston, Sacramento and Indianapolis.  Verizon CEO Hans Vestberg told CNBC the operator is going to be first in the world with 5G. “We are building everything right now,” he said, with 5G mobile phones due in the hands of consumers next year.

References:

https://www.verizon.com/about/news/5g-move-verizon-and-nokia-complete-first-5g-nr-mobility-call

https://www.rcrwireless.com/20180817/5g/verizon-nokia-test-5g-nr-call-mobility

https://www.fiercewireless.com/wireless/verizon-nokia-complete-5g-nr-mobility-call

 

Verizon talks up OTT video over “5G” fixed access; will participate in “5G” trial in South Africa

Verizon will join with an unannounced over-the-top (OTT) video company rather than launch a linear service of its own, CEO Lowell McAdam said during a Yahoo Finance interview yesterday. Verizon intends to bundle the OTTP video service with its “5G” fixed access starting in the fourth quarter. “I think the linear TV model is dead — it’s just going to take a long time to die,” he said.

“Our view is we should partner with those that are in the linear game, let them be very good at what they do. We’ll add digital content to that mix and we’ll position ourselves for where we become more of an over-the-top video culture versus the linear model that we have today.”

What McAdam is previewing is an integrated OTT offer that combines a linear channel line-up and VOD with Verizon’s digital assets. He hopes this approach will provide both some differentiation in the market and additional ways to monetize their Oath digital content.

………………………………………………………………………………………………………………………………………………………..

Separately,  Verizon will participate in a trial “5G” network to be deployed in South Africa by local telecommunications company Comsol. South Korea’s Samsung Electronics has also joined Comsol as a partner in the venture.  The three firms will deploy a trial “5G” network, which will be operational by the third quarter of 2018, Comsol CEO Iain Stevenson told TechCentral by phone on Tuesday. The objective is to showcase the network at the upcoming ITU Telecom World conference to be hosted by South Africa later this year.

Stevenson said the trial will be converted into a full commercial network with more base stations early next year once the 5G standards have been ratified. Comsol has been working to build a 5G network in South Africa for some time.

The trial, which will take place in Johannesburg, will consist of two “multi-sector” base stations to start, connected to fibre-optic backhaul. Multiple demonstration points will be established where members of the public will be able to experience 5G, which will deliver gigabit-class Internet access. Both Samsung, whose technology will be used in the trial, and Verizon will send engineers to South Africa to assist in the construction of the network.

Though the trial network will be “non-commercial”, customers will be connected to it and will use it in real-world environments, Stevenson said. Other 5G trials in South Africa have not involved live customers.

The “point-to-multipoint” network will utilise Comsol’s extensive spectrum assignment at 28GHz — it owns more than 30% of the high-frequency band. Stevenson declined to comment in detail on Comsol’s strategic plans, including its likely future funding model, but said it intends offering services to both businesses and retail consumers, with the technology serving as a replacement to fiber.

The trial is aimed at delivering a wireless solution that rivals “FTTx” offerings, including fiber to the business and fiber to the home, by early next year. This will be achieved by using the “pre-5G” proprietary standard from Verizon’s 5G Technical Forum for fixed-wireless deployments in the 28GHz and 39GHz bands. The proprietary standard will ultimately be converted into the 3GPP 5G New Radio specification once they have been confirmed by ITU-R WP 5D (not before August 2019!)

Stevenson said 5G fixed-wireless access has the potential to connect millions of South Africans with high-speed connectivity that would never be possible with fiber solutions, which, he said, require significant investment in physical infrastructure.

“Verizon has made significant investments in spectrum and technology and established a number of strategic collaborations to launch fixed-wireless 5G services in between three and five US cities by the end of this year.”

Sung Yoon, president and CEO of Samsung Electronics Africa, said in a statement about the collaboration between the companies that there is “so much opportunity in the region due to the diversity of markets and services already in place here, and we think South Africa is a prime candidate to show off the benefits that 5G can bring to consumers here.”

“While this agreement initially focuses on 5G fixed-wireless access, over time this will evolve into consumer offerings, similar to the way that we use 4G services today,” Stephenson said.

Reference:

https://www.techcentral.co.za/verizon-samsung-back-new-5g-network-in-sa/81229/

 

 

Korea Telecom to launch 5G service in March 2019 with what endpoints?

Korea Telecom (KT) announced today that it plans to offer 5G cellular service in March 2019, according to Yonhap and other news sources.

“It is true 5G only when coverage is guaranteed,” Oh Seong-mok, president of KT’s network business division, told reporters in Seoul.  “KT will launch the 5G service for the first time in the world that combines true mobility, excellent service and nationwide coverage,” the KT executive added.

During this year’s PyeongChang Winter Olympics, KT offered a trial service of its 5G service for the first time in the world, allowing athletes and visitors to experience data transmission speeds 40-50 times faster than LTE.

Industry watchers said that at present, it is virtually impossible to set up a 5G nationwide network on par with existing LTE coverage, so full-fledged services will invariably be offered in major metropolitan areas first.  Customers may not be able to immediately use KT’s 5G service next year because major makers of smartphones and silicon, including Samsung Electronics Co. and Qualcomm Technologies Inc., will only start shipping smart phones and 5G chip sets between the end of this year and the first half of 2019, KT said.  Of course, those smart phones and silicon in them will not be compliant with the IMT 2020 standard which won’t be completed till late 2020.

Oh Seong-mok, president of KT’s network business, speaks at a press conference at the firm’s Gwanghwamun building in downtown Seoul, Thursday, stressing the firm will launch commercial 5G network services early next year based on its successful provision of the 5G trial service at the PyeongChang Winter Olympics. / Courtesy of KT

……………………………………………………………………………………………………………………………………………………………………………………………………

KT said it has no plans to commercialize its 5G network based on Fixed Wireless Access (FWA) currently being championed by U.S. mobile carrier Verizon which plans to provide fixed 5G with an FWA system in the first half of this year.  Mr. Oh said commercializing the 5G service based on FWA is a step backward as the technology has already been seen before.  That comment comes after KT collaborated with Verizon on 5G video calling tests during last month’s Super Bowl, illustrating the fierce international competition to bring 5G to market first.

References:

http://english.yonhapnews.co.kr/news/2018/03/22/0200000000AEN20180322007500320.html

https://asia.nikkei.com/Tech-Science/Tech/South-Korea-s-KT-to-launch-5G-service-for-businesses-next-March

https://venturebeat.com/2018/03/22/korea-telecom-to-launch-5g-in-march-2019-calls-verizons-earlier-5g-backwards/

http://koreabizwire.com/kt-aims-5g-commercial-launch-in-march-2019/114895

https://www.koreatimes.co.kr/www/tech/2018/03/133_246024.html

Verizon, Qualcomm, and Ericsson collaborate on successful Massive MIMO Trial

Verizon said in a press release that it completed the first successful FDD (Frequency Division Duplexing) massive MIMO (Multiple Input Multiple Output) trial with a fully compatible customer device thanks to its collaboration with Ericsson and Qualcomm.   The trial included the use of the latest Ericsson massive MIMO software and hardware along with a mobile test device powered by Qualcomm’s Snapdragon 845 Mobile Platform with an X20 LTE modem.

According to the aforementioned press release:

Massive MIMO is a key technology component in the evolution towards 5G. It has the potential of greatly improving network capacity and the customer’s experience. To realize the gains, both the network and devices need to support new TM9 [1] functionality which leverages advanced beam forming schemes between the network equipment and the mobile device. This will raise network spectral efficiency and customer speeds.

Note 1.  In 3GPP Release-10 (LTE-Advanced) Transmission Mode 9 (TM9) was introduced.  TM9 is designed to help reduce interference between base stations to maximise signal stability and boost performance. The new TM-9 enables the enhancement of network capabilities and performance with minimum addition of overhead. More information on TM9 is here.

………………………………………………………………………………………………………..

Qualcomm introduced the 845 Mobile Platform at the Snapdragon Summit in Hawaii in early December.   The trial comes after Verizon and Ericsson deployed massive MIMO on the wireless carrier’s Irvine, Ca network in late October.

“We don’t wait for the future, we build it. And this is another great example of moving the industry forward,” Verizon Chief Network Engineer and Head of Wireless Networks Nicola Palmer said in the release. “Massive MIMO is a critical component of our 4G LTE Advancements and will play an important role in 5G technology that will result in single digit latency and scalability in the billions of connections,” he added.

Joe Glynn, vice president, business development at Qualcomm Technologies, Inc. said: “This milestone further demonstrates Qualcomm Technologies’ leadership and commitment to continually bring innovative technologies to consumers to improve their mobile experiences. We look forward to continuing our work with Verizon and Ericsson to push the limits of LTE while ushering in a world of 5G.”

Massive MIMO is an LTE Advanced (4G) technology which has been described as being akin to a set of focused flashlights targeting users rather than a single floodlight. The high number of transmitters enables more possible signal paths and beam forming, which directs the beam from the cell site directly to where the customer is located, dramatically cutting down on interference.

Figure 1

Figure 1. Massive MIMO exploits large antenna arrays to spatially multiplex many terminals.

……………………………………………………………………………………………………………………………….

Image result for images for massive MIMO

Figure 2. Active Phased Array Antenna (APAA) shown above right in 5G base stations. The combination of analog beam forming via APAA and digital MIMO signal processing for the multi-beam multiplexing is believed to be one of the promising approaches for reducing the complexity and power consumption of 5G base stations.  However, that has yet to be proven in a commercial 5G deployment.

………………………………………………………………………………………………………………………………….

In October, Verizon and Ericsson announced they had achieved a milestone in LTE Advanced technologies by completing their first deployment of FDD massive MIMO on Verizon’s wireless network in Irvine, California. Massive MIMO improves both spectral and energy efficiency, increasing network capacity for currently compatible devices in the market. Customers experience higher and more consistent speeds when using apps and uploading and downloading files.

Ericsson’s massive MIMO portfolio is expected to be available next year, putting it in line with commercial smartphones with the TM9 compatible chipset, which are expected to hit the market in the first half of 2018.

The past year saw a lot of talk around massive MIMO, which is considered by many to be a foundation technology for 5G. At the inaugural Mobile World Congress Americas in September, Sprint and Ericsson unveiled results of 2.5 GHz massive MIMO field tests conducted in Seattle and Plano, Texas, using Sprint’s spectrum and Ericsson’s radios.

  • In early September, Ericsson said massive MIMO was part of a trial with T-Mobile US using mid-band FDD spectrum on three sites in Baltimore, Maryland.
  • In February, Blue Danube Systems announced the completion of commercial trials using its massive MIMO technology in licensed FDD LTE spectrum with AT&T and Shentel.

Niklas Heuveldop, Head of Market Area North America, Ericsson, said: “Advanced Antenna Systems and Massive MIMO are key technology enablers for 5G, and 4G LTE service providers and end users will also benefit from the superior capacity and network performance these technologies enable. The latest trial is another important step in the collaboration we have with Verizon and Qualcomm Technologies to further evolve 4G and prepare the network for 5G.”

The Ericsson Massive MIMO portfolio is expected to be available next year, putting it well in line with commercial smartphones with the TM9 compatible chipset, which are expected to hit the markets in the first half of 2018.

References:

https://www.verizon.com/about/news/verizon-qualcomm-and-ericsson-collaborate-trial-latest-massive-mimo-advancements-path-5g

Verizon, Ericsson Team Up for Massive MIMO Deployment

http://www.samsung.com/global/business-images/insights/2017/Massive-MIMO-Comes-of-Age-0.pdf

http://www.ni.com/white-paper/52382/en/

https://techblog.comsoc.org/2017/10/17/mimo-starting-to-realize-its-full-potential-in-lte-networks/

https://techblog.comsoc.org/2015/06/30/separating-5g-fact-from-hype-is-massive-mimo-a-solution-or-dead-end/

https://www.itu.int/en/ITU-T/Workshops-and-Seminars/qos/201707/Documents/Rami%20Alnatsheh-%20Orchestrating%20the%20Performance%20of%205G.pdf

https://www.everythingrf.com/News/details/2639-zte-completes-massive-mimo-tests-for-imt-2020-5g

https://arxiv.org/pdf/1612.03993.pdf

http://www.analog.com/en/analog-dialogue/articles/massive-mimo-and-beamforming-the-signal-processing-behind-the-5g-buzzwords.html

 

Verizon, Ericsson Team Up for Massive MIMO Deployment

Verizon and Ericsson have deployed frequency division duplexing (FDD) Massive Multiple Input-Multiple Output (MIMO) technology on the Verizon’s wireless network in Irvine, Calif., a step forward in implementing “5G” wireless communications. Ericsson provided 16 transceiver radios and 96 antenna elements in an array for the deployment.

The two companies say the Massive MIMO deployment will improve spectral and energy efficiency, increasing network capacity for current devices in the market.  Other network enhancements are expected to provide higher and more consistent speeds for using apps and uploading and downloading files, clearing the pathway for “5G” deployment.

The massive MIMO deployment is running on a 20 MHz block of AWS spectrum.  Four-way transmit has been widely deployed throughout the Verizon network and has contributed to significant 4G LTE advancements, according to the announcement. The high number of transmitters from the Massive MIMO provides more possible signal paths.  It also enables beamforming, which directs the beam from the cell site directly to where the customer is, dramatically cutting down on interference.  Reduced interference results in higher and more consistent speeds for customers.

Image result for pic of massive MIMO

Note:  Massive MIMO is a candidate feature for IMT 2020 (standardized 5G).  Please see last references for authoritative status of IMT 2020.

……………………………………………………………………………………………………….

“While continuing to drive 5G development, the deployment of Massive MIMO offers very tangible benefits for our customers today.  As we innovate, we learn and continue to lay the groundwork and set the standards for 5G technology,” said Nicola Palmer, Verizon Wireless chief network officer, in a prepared statement. “Our collaboration with Ericsson on this new deployment continues to drive industry-wide innovation and advancements.”

“We have a tremendous excitement around 5G, and today we made a great announcement to our commitment of driving the 5G ecosystem,” Verizon SVP Atish Gude said

Niklas Heuveldop, Ericsson head of market area North America said: “Massive MIMO is a key technology enabler for 5G, but already today, 4G LTE service providers and end users can benefit from the superior capacity and network performance this technology enables.  The current trial is an important step in the collaboration we have with Verizon to prepare their network for 5G.”

Ericsson is active with massive MIMO deployments on other carrier networks, including Sprint, who announced a deployment last month.

References:

ABI Research: MIMO starting to realize its full potential in LTE Advanced networks

On the Path to 5G, Verizon, Ericsson Team Up for Massive MIMO Deployment

 

http://www.zdnet.com/article/verizon-and-ericsson-deploy-massive-mimo-on-irvine-lte-network/

IEEE ComSoc Webinar: 5G: Converging Towards IMT-2020 Submission

IMT 2020 workshop which includes hyperlinks to enable you to download the presentations:
Note: There were 4 organizations that presented their proposed IMT 2020 RAN (AKA RIT/SRIT) schemes at this workshop:
3GPP 5G, ETSI DECT, Korea IMT 2020 and China IMT 2020
Page 2 of 3
1 2 3