InterSAT extends Pan-African satellite services via Ku-band on Eutelsat 70B satellite

Eutelsat Group has extended its partnership with African satellite network service provider InterSat to support its growth in the pan-African enterprise and retail segments. Under the new multi-year deal, InterSAT will add Ku-Band capacity over Central and Eastern Africa on Eutelsat’s Eutelsat 70B satellite to its current portfolio, which already includes Ka-Band capacity on the Eutelsat Konnect satellite. The Eutelsat 70B offers wide beam coverage and four high-performance fixed beams, with a high degree of on-board connectivity. The partnership extension highlights the role of VSAT services delivered through powerful, geostationary capacity to reach remote areas.

“We are delighted to be able to rely on Eutelsat capacity once again to support our growth ambitions in Africa, home to some of the world’s most remote and underdeveloped regions which represent a challenging environment for building terrestrial communication networks. Leveraging our VSAT service expertise and our teleport infrastructure, we are able to use satellite communication to deliver reliable and cost-effective connectivity to remote and underserved areas while assuring a high-end user experience for our customers,” said Hanif Kassam, Chief Executive Officer of InterSAT.

“We are honoured to be selected by our long-standing partner, InterSAT, to accompany the further roll-out of its services in Africa. The growth of VSAT services in Africa is a testament to the potential of this technology to transform the continent’s ICT landscape, connecting more people and businesses than ever before, as well as the ongoing relevance of our powerful geostationary in-orbit assets to deliver a compelling and reliable connectivity service to the remotest areas,’’ commented Ghassan Murat, Eutelsat’s Regional Vice President (RVP) of the Africa, Middle East, and Asia (AMEA) region

Image Credit: EUTELSAT GROUP

………………………………………………………………………………………………………………………………………………………………………………………………………………………….

On May 22nd, YahClick (the data solutions’ arm of UAE’s Al Yah Satellite Communications Company PJSC) and Eutelsat signed a Memorandum of Understanding (MOU) for YahClick to leverage capacity on Eutelsat’s geostationary satellite, EUTELSAT KONNECT. The collaboration between the two leading satellite operators is in line with Yahsat’s efforts to elevate its offerings and drive growth across its satellite broadband footprint in Africa to provide enhanced services and expand into new markets in Africa and beyond. As part of the agreement. Yahsat will enjoy exclusive rights to Eutelsat’s KONNECT capacity over Ethiopia, one of the fastest-growing African markets.

Sulaiman Al Ali, Chief Commercial Officer of Yahsat said: ‘We are delighted to partner with Eutelsat and have access to state-of-the-art orbital assets, to support our satellite network. This partnership shall enable us to further enhance our portfolio and drive growth of our ‘YahClick’ broadband services to consumer and enterprise markets. Yahsat supported Eutelsat in the early years of its African Broadband journey, and we are happy to be collaborating once again to ensure our existing and future customers benefit from the highest level of service and availability.”

Ghassan Murat, Eutelsat’s RVP of the AMEA region added: “We are honoured to further deepen our ties with our long-standing partner, Yahsat. Yahsat’s strong presence in Africa and the Middle East through the successful deployment of its YahClick satellite broadband service, together with the uptake we are seeing as we progressively transfer EUTELSAT KONNECT capacity to Africa highlight the buoyant demand for robust broadband services in the market, and the pertinence of satellite in connecting users, even in the most remote locations.”

………………………………………………………………………………………………………………………………………………………………………………………………………………………….

About Eutelsat Group:

Eutelsat Group is a global leader in satellite communications, delivering connectivity and broadcast services worldwide. The Group was formed through the combination of the Company and OneWeb in 2023, becoming the first fully integrated GEO-LEO satellite operator with a fleet of 36 Geostationary satellites and a Low Earth Orbit (LEO) constellation of more than 600 satellites. The Group addresses the needs of customers in four key verticals of Video, where it distributes more than 6,500 television channels, and the high-growth connectivity markets of Mobile Connectivity, Fixed Connectivity, and Government Services. Eutelsat Group’s unique suite of in-orbit assets and ground infrastructure enables it to deliver integrated solutions to meet the needs of global customers. The Company is headquartered in Paris and the Eutelsat Group employs more than 1,700 people across more than 50 countries. The Group is committed to delivering safe, resilient, and environmentally sustainable connectivity to help bridge the digital divide.

References:

https://www.eutelsat.com/en/news/press.html#/pressreleases/eutelsat-ku-band-capacity-selected-by-intersat-to-extend-its-pan-african-satellite-services-to-enterprise-and-retail-customers-3324324

https://www.eutelsat.com/en/news/press.html#/pressreleases/yahsat-partners-with-eutelsat-group-to-leverage-eutelsat-konnect-satellite-to-drive-growth-across-its-global-footprint-3324486

Highlights of IEEE Triple Milestone Event – May 20, 2024 at CHM

Three very significant IEEE Milestones were celebrated May 20th at the Computer History Museum (CHM) in Mt. View, CA.  They were as follows:

  1.  Google’s PageRank Algorithm and the Birth of Google. The PageRank Algorithm shaped our access to digital content and put Google on the map as an established web search company.
  2.  The 1974 IEEE Computer Society paper on TCP (“Transmission Control Protocol (TCP) Enables the Internet”) authored by Vint Cerf and Bob Kahn.
  3.  The IEEE 802 LAN/MAN Standards Committee which generated and maintains the standards for IEEE 802.3 (Ethernet), 802.11 (Wi-Fi®), 802.15 (early Bluetooth), among others.

Among newer and important IEEE 802 projects:

  • IEEE 802.1 Time Sensitive Networks Task Group provides standards for deterministic connectivity through IEEE 802 networks (i.e., guaranteed packet transport with bounded latency, low packet delay variation, and low packet loss).  It’s being used at CERN’s Large Hadron Collider (LHC) – the world’s largest and most powerful particle accelerator.
  • IEEE 802.19 Wireless Coexistence Working Group deals with coexistence between unlicensed wireless networks. Many of the IEEE 802 wireless standards use unlicensed spectrum and hence need to address the issue of coexistence when operating in the same unlicensed frequency band in the same location.

In addition, four other ground breaking IEEE milestones were briefly discussed:

  1. Development of the Commercial Laser Printer, 1971-1977 Ron Rider, VP of Digital Imaging (retired), Xerox PARC
  2. Xerox Alto Establishes Personal Networked Computing, 1972-1983 John Shoch, Office Systems Division President (retired), Xerox PARC
  3. Ethernet Local Area Network (LAN), 1973-1985.
  4. ALOHAnet Packet Radio Data Network, 1971 Bob Metcalfe, Co-Inventor of Ethernet at Xerox PARC and Frank Kuo, University of Hawaii.

Dedication of the above 4 Milestones:

The first three milestones were dedicated at SRI PARC on Friday, May 17th.  The fourth milestone ALOHAnet led directly to the development of Ethernet.

………………………………………………………………………………………………………………..

You can watch a replay of this four hour event here.

………………………………………………………………………………………………………………..

………………………………………………………………………………………………………………..

Of particular significance to IEEE Techblog readers:

  • Vint Cerf, who co-authored the TCP (Transmission Control Protocol) paper with Bob Kahn and is often called a “father of the Internet,” described the history of the Internet.  He said that Arpanet and ALOHAnet led the way to the Internet, which is celebrating its 50th anniversary this month with the IEEE Computer Society’s publication of the TCP paper.
  • In addition to new enabling technologies (e.g. hollow core fiber and LEO satellite connectivity) Vint said we need new policies for economic, social and legal frameworks to make the Internet safer and more secure. Also, to hold bad actors responsible for malicious behavior.  The Internet Society and others need to educate regulators to make these types of changes.
  • Past and present executives of the IEEE 802 LAN/MAN Standards Committee discussed the success of Ethernet (802.3), Wi-Fi (IEEE 802.11),  Wireless Specialty Networks (IEEE 802.15), MAC Bridging (IEEE 802.1) which were developed by IEEE 802 LMSC.  The purpose and role of the Radio Regulatory Technical Advisory Group, which supports the work of various 802 wireless standards, was also explained.
  • Ethernet co-inventor Bob Metcalfe provided a genesis of Ethernet which he co-invented with David Boggs while at Xerox in 1973.  Working on Project MAC at MIT in 1970, Metcalfe used the Arpanet to connect dumb terminals to time shared computers. After he joined Xerox PARC, Bob read a paper about the ALOHAnet network at the University of Hawaii by Norm Abramson and was so intrigued that he visited there for one month to gain a deeper understanding of that innovative radio packet network.  It used randomized retransmissions after a collision.  The Ethernet MAC protocol (Carrier Sense Multiple Access with Collision Detection) he developed used similar ALOHAnet concepts.  At 2.94 Mb/sec, the first Ethernet was 306.25 times faster than ALOHAnet (9.6 Kb/sec). That’s because it ran on 0.5 inch coaxial cable rather than radio airwaves.  The 2.94 Mb/sec rate (vs 3 Mb/sec) was chosen due to the size limitation of the Ethernet circuit card which could not include a 3 Mb/sec crystal oscillator. That first 1973 version of Ethernet was used at Xerox to enable Alto GUI workstations (predecessor to the PC) to share a networked laser printer and for Xerox PARC engineers to communicate via in house email.

Addendum: Metcalfe did not mention that the hardware for the 10M b/sec version of Ethernet, which in 1985 became the IEEE 802.3 10Base5 CSMA/CD standard, was designed at Xerox by Robert Garner and Ron Crane, RIP.

In April 2022, IEEE SV Tech History committee (founded and initially chaired by this author 2013-2015), presented an event on the history of Ethernet at Xerox.  The event description is here and the video is here.  Unsung Hero of Ethernet Geoff Thompson moderated this superb panel session.  It was originated by this author to provide well deserved recognition for another Unsung Hero- the late and great Ron Crane who (with Robert Garner) co-designed Xerox’s 10 Mb/sec Ethernet circuit card for the Xerox Star workstation as well as 3COMs breakout product –  Etherlink circuit card (product # 3C100) for the IBM PC, which shipped in September 1982.

References:

IEEE Triple Milestone Event – 50th Anniversary of TCP/IP

https://ieeetv.ieee.org/channels/ieeetv-specials/ieee-milestone-celebration-tcp-802-standards-and-google

https://ieeetv.ieee.org/event/ieee-milestone-celebration-50-years-internet

https://spectrum.ieee.org/ethernet-ieee-milestone

VOE-Geoff Thompson

https://ethernethistory.typepad.com/my_weblog/2017/08/in-memory-of-ron-crane.html

 

IEEE ComSocSV/SCU SoE New Event (free): Inside a Telecom Chip Start-up and its 4G+5G Base Station SoC

Date & Time: May 30th, 2:30pm to 5pm
Venue: Santa Clara University – SCDI 1308

Register at: https://events.vtools.ieee.org/m/421628

Agenda/Timeline:
⦁ 2:30pm-3pm Registration & Networking
⦁ 3pm Opening Remarks
⦁ 3:05pm-4pm Presentation
⦁ 4pm-4:30pm Panel Discussion/Conversation
⦁ 4:30pm-4:50pm Audience Q & A
⦁ 4:50pm-4:55pm Closing Remarks & Acknowledgements

Abstract:
As 5G evolves for both public and private networks, edge demands will impact the fluidity and constructs of 5G infrastructure. Mobile network operators (public 5G) and enterprises (private 5G) are confronted with a daunting fundamental challenge:

How to deploy a wireless infrastructure that can effortlessly scale across all future upgrades (e.g. 5G Advanced) and demands, without incurring the traditional capital and operating expense of a system redesign and rip-and-replace costs?

This talk will cover the starting point of all wireless infrastructure – the 4G+5G baseband System on a Chip (SoC). We will discuss: how a”soft modem” can scale with evolving infrastructural demands across small cells and macro cells, new application use cases, emerging megatrends (such as 5G non-terrestrial networks), market fundamentals impacting 5G deployments, and personal insights into the starting and evolution of a 5G semiconductor startup company in the era of AI.

About EdgeQ:

Five years in the making, EdgeQ emerged in 2018 as one of the very few semiconductor startups [1.] focusing on 5G wireless infrastructure. Led by executives from Qualcomm, Intel, and Broadcom, EdgeQ is pioneering converged connectivity and AI that is fully software-customizable and programmable. The company has raised multiple financing rounds, backed by world-renowned investors across all major continents.  See below for awards EdgeQ has received.

Note 1. There’s been a significant decline in funding for semiconductor startups over the past 10 years due to a maturing industry, high capital requirements, and fewer exits. In 2021, chip startups globally raised $8.3 billion in 263 deals, but in 2023, U.S. startups have only raised $262 million in 17 deals. There have been EVEN FEWER semiconductor startups focusing on wireless telecommunications as EdgeQ has done.

Speakers and Panelists:

  • Adil Kidwai, Head of Product Management, EdgeQ
  • Edward Wu, Head of Marketing & Market Development, EdgeQ

Moderator:  Alan J Weissberger, IEEE Techblog Content Manager, SCU SoE Scholar in Residence, IEEE GCN North American Correspondent

………………………………………………………………………………….

EdgeQ Awards:

2023 GLOMO Award Winner

References:
https://www.edgeq.io/edgeq-debuts-worlds-first/
https://techblog.comsoc.org/2024/03/03/edgeq-demos-massive-state-of-the-art-o-ran-based-mimo-solution-at-mwc-2024/
https://techblog.comsoc.org/2021/08/19/edgeq-samples-worlds-1st-software-defined-5g-base-station-on-a-chip/

U.S. broadband subscriber growth slowed in 1Q-2024 after net adds in 2023

The pace of U.S. broadband subscriber growth slowed considerably in the first quarter of 2024 as fiber, fixed wireless access (FWA) and cable broadband service providers collectively turned in results that were worse than what they posted in the year-ago period.

Total industry net additions, including or excluding FWA and geosynchronous (GEO) satellite broadband providers, decelerated noticeably in Q1 2024. The total market’s growth rate decreased to just 2.3% year-over-year, the slowest since the COVID-19 pandemic, analysts at MoffettNathanson estimated in its latest broadband industry trends report (paid subscription required). When FWA and GEO satellite categories were excluded, the growth rate was much worse: -0.7%.

The overall number of  U.S. broadband market subscribers decelerated by 299,000 net adds versus the year-ago quarter.  “That was the most abrupt since Q2 2022,” said MoffettNathanson analyst Craig Moffett.  “The bottom line is that penetration of home broadband stalled, and perhaps even declined in the quarter, particularly if one adjusts for the growth in homes passed in rural areas under RDOF [Rural Digital Opportunity Fund] subsidies and unsubsidized edgeouts,” Moffett wrote.

Here’s a breakdown of U.S. broadband subscribers by access type:

  • Fixed Wireless Access (FWA) providers added 879,000 subs in Q1 2024, down from a gain of 925,000 in the year-ago period.
  • Fiber net adds also slowed – from 487,000 in Q1 2024 versus a gain of 517,000 in the year-ago quarter.
  • DSL losses of 560,000 in Q1 were similar to a year-ago loss of 571,000.
  • MSO/cable network operators shed 169,000 broadband subs in Q1, much worse than a year-ago gain of about 71,000 subs.

“The culprit for cable’s weaker broadband net additions was a slower market growth rate,” though lower new household formation and cessation of ACP enrollments in the quarter also played a role, Moffett noted.

……………………………………………………………………………………………………………..

According to Statista, the total number of broadband subscribers in the U.S. stood at 114.7 million at the end of 2023,  This was an increase of over four million subscribers compared to the previous year.

Source: Statista

…………………………………………………………………………………………………………………………

In March 2024, Leitman Research found that the largest cable and wireline phone providers and fixed wireless services in the U.S. – representing about 96% of the market – acquired about 3,520,000 net additional broadband Internet subscribers in 2023, similar to a pro forma gain of 3,530,000 subscribers in 2022.

Leitman Research findings for 2023:

  • The top cable companies lost about 65,000 subscribers in 2023 – compared to about 530,000 net adds in 2022
  • The top wireline phone companies lost about 80,000 total broadband subscribers in 2023 – compared to about 180,000 net losses in 2022
    • Wireline Telcos had about 1.97 million net adds via fiber in 2023, offset by about 2.05 million non-fiber net losses
  • Fixed wireless/5G home Internet services from T-Mobile and Verizon added about 3,665,000 subscribers in 2023 – compared to about 3,185,000 net adds in 2022
    • Fixed wireless services accounted for 104% of the total net broadband additions in 2023, compared to 90% of the net adds in 2022, and 20% of the net adds in 2021

“Top broadband providers added about 3.5 million subscribers in 2023, similar to the number of broadband adds in 2022,” said Bruce Leichtman, president and principal analyst for Leichtman Research Group, Inc.  “Over the past four years, top providers added about 15.9 million broadband subscribers, compared to about 10.2 million net broadband adds in the prior four (pre-pandemic) years.”

………………………………………………………………………………………………………..

References:

https://www.lightreading.com/broadband/us-broadband-subscriber-pace-slows-across-the-board

https://www.statista.com/statistics/217938/number-of-us-broadband-internet-subscribers/

About 3,500,000 Added Broadband From Top Providers in 2023

Dell’Oro: Broadband access equipment sales to increase in 2025 led by XGS-PON deployments

Fiber and Fixed Wireless Access are the fastest growing fixed broadband technologies in the OECD

Verizon’s 2023 broadband net additions led by FWA at 375K

Charter Communications: surprise drop in broadband subs, homes passed increased, HFC network upgrade delayed to 2026

Altice USA transition to fiber access; MoffettNathanson analysis of low population growth on cablecos broadband growth

Hubble Network Makes Earth-to-Space Bluetooth Satellite Connection; Life360 Global Location Tracking Network

U.S. startup Hubble Network has claimed Bluetooth-based satellite communications is possible  after transmitting data from standard Bluetooth devices to its new satellite constellation, launched in March. The firm, with a $20 million funding round behind it, reckons it will extend Bluetooth transmissions from 10 meters to hundreds of kilometers. It wants to “connect a billion devices” on the “world’s first truly global, cost-efficient, and low-power network,” the company said in a press release.

“We’ve disproved thousands of skeptics,” claims Hubble Network co-founder and chief executive officer Alex Haro of his company’s milestone achievement. “By showcasing that we can send signals directly from Bluetooth chips and receive them in space 600km [around 370 miles] away, we’ve opened a new realm of possibilities.”

Hubble Network has successfully proven the core concept on which the company was founded: that a Bluetooth connection, typically thought of as exclusively for short-range wireless connectivity, can be made between a device on Earth and an orbiting satellite.

“We’ve disproved thousands of skeptics,” claims Hubble Network co-founder and chief executive officer Alex Haro of his company’s milestone achievement. “By showcasing that we can send signals directly from Bluetooth chips and receive them in space 600km [around 370 miles] away, we’ve opened a new realm of possibilities.”

Following its $20m Series A funding round in 2023, Hubble Network has been quietly working towards its most recent milestone. In early March this year it launched its first two satellites from the Vandenberg Space Force Base, to serve as a proof-of-concept test-bed for its core proposal: to use ground-to-space Bluetooth links for energy-efficient Internet of Things (IoT) connectivity.

“Our innovative approach allows existing Bluetooth-enabled devices to be retrofitted to transmit data to the Hubble Network without any hardware modifications,” explains co-founder and chief technology officer, “ushering in a new era of connectivity.”

According to Hubble Network’s internal testing, a device communicating with its satellites using Bluetooth could draw one-twentieth of the power of a similar cellular-based device — and be used at one-fiftieth the operating costs. This, too, using existing Bluetooth hardware, with no need to replace existing radio modules.

Two satellites, granted, is a somewhat limited constellation. Following its first successful Earth-to-space Bluetooth link, the company has stated that it will focus on increasing the number of satellites in orbit in order to boost capacity and increase coverage — and has opened a waitlist for those interested in experimenting with its official developer’s kit.

Separately,  Life360, a family connection and safety company, has announced a signed non-binding letter of intent with Hubble Network to become the exclusive consumer application of their groundbreaking satellite Bluetooth technology. Through this strategic partnership, Life360 will leverage Hubble’s global satellite infrastructure and Life360’s global network of over 66 million smartphones to introduce “Find with Life360,” a global location-tracking network. Hubble’s breakthrough achievement of connecting Bluetooth devices to a satellite tracking network avoids previous limitations of Bluetooth location-tracking devices. Find with Life360 has the potential to herald a new era in location tracking and surpass the finding network capabilities of Apple and Google.

References:

https://hubblenetwork.com/

https://www.hackster.io/news/hubble-network-beats-the-doubters-makes-its-first-earth-to-space-bluetooth-satellite-connection-1d05f8971283

https://www.prweb.com/releases/hubble-network-achieves-first-ever-bluetooth-connection-to-space-302134952.html

https://www.prnewswire.com/news-releases/life360-partners-with-hubble-network-to-build-global-location-tracking-network-aiming-to-leapfrog-apple-and-google-302143503.html

AT&T deal with AST SpaceMobile to provide wireless service from space

AT&T and satellite network provider AST SpaceMobile are teaming up to provide wireless service from space — a challenge to Elon Musk’s SpaceX, which struck a similar deal two years ago with T-Mobile US.  AT&T and AST SpaceMobile formalized the partnership following an earlier testing period. They said on Wednesday that their agreement to build a space-based broadband network will run through 2030.

AT&T head of network Chris Sambar will join the AST SpaceMobile board, deepening a relationship that dates back to at least 2018. Sambar said in an interview that his team is confident in AST SpaceMobile’s technology, as demonstrated by the performance of the BlueWalker 3 test satellite. The relationship is moving from “loose partner to a strategic partner,” he said.

Wireless providers are in a race to offer connections for the world’s estimated 5 billion mobile phones when those devices are in remote areas beyond the reach of cell towers. For consumers, these services hold the promise of connectivity along rural roads and in places likes national parks. The service is typically marketed as a supplement to standard wireless coverage.

The new satellite network will work with ordinary mobile phones, offering a level of convenience that’s lacking in current call-via-satellite services, which require the assistance of bulky specialized equipment.

“Space-based direct-to-mobile technology is designed to provide customers connectivity by complementing and integrating with our existing mobile network,” said Jeff McElfresh, Chief Operating Officer, AT&T. “This agreement is the next step in our industry leadership to use emerging satellite technologies to provide services to consumers and in locations where connectivity was not previously feasible.”

“Working together with AT&T has paved the way to unlock the potential of space-based cellular broadband directly to everyday smartphones. We are thrilled to solidify our collaboration through this landmark agreement,” said Abel Avellan, AST SpaceMobile Founder, Chairman, and CEO. “We aim to bring seamless, reliable service to consumers and businesses across the continental U.S., transforming the way people connect and access information.”

AST SpaceMobile this summer will send five satellites to Cape Canaveral, Florida, for launch into low Earth orbit. AT&T’s Sambar didn’t say when service to customers might begin. “This will be a full data service, unlike anything you can get today from a low-Earth orbit constellation,” Sambar said.

T-Mobile is working with the low-Earth orbiting Starlink service from Musk’s Space Exploration Technologies Corp. The mobile carrier earlier said that its calling-via-satellite service could begin this year.

SpaceX has roughly 6,000 satellites aloft in low-Earth orbit — far more than any other company. The trajectory, with satellites circling near the Earth’s surface, allows communications signals to travel quickly between spacecraft and a terrestrial user.

SpaceX in January launched its first set of satellites capable of offering mobile phone service. The service “will allow for mobile phone connectivity anywhere on Earth,” Musk said in a post on X, the social network formerly known as Twitter, though he added that technical limitations mean “it is not meaningfully competitive with existing terrestrial cellular networks.”

…………………………………………………………………………………………………………………………………………………………………………………………………………………………………

About AST SpaceMobile

AST SpaceMobile, Inc. is building the first and only global cellular broadband network in space to operate directly with standard, unmodified mobile devices based on our extensive IP and patent portfolio, and designed for both commercial and government applications. Our engineers and space scientists are on a mission to eliminate the connectivity gaps faced by today’s five billion mobile subscribers and finally bring broadband to the billions who remain unconnected. For more information, follow AST SpaceMobile on YouTubeX (formerly Twitter)LinkedIn and Facebook. Watch this video for an overview of the SpaceMobile mission.

References:

https://www.bloomberg.com/news/articles/2024-05-15/at-t-strikes-space-broadband-deal-in-challenge-to-musk-s-spacex

https://about.att.com/story/2024/ast-spacemobile-commercial-agreement.html

AST SpaceMobile: “5G” Connectivity from Space to Everyday Smartphones

AST SpaceMobile achieves 4G LTE download speeds >10 Mbps during test in Hawaii

AST SpaceMobile completes 1st ever LEO satellite voice call using AT&T spectrum and unmodified Samsung and Apple smartphones

AST SpaceMobile Deploys Largest-Ever LEO Satellite Communications Array

 

 

An IEEE Communications Resource Designed for Telecom Engineers

by Danielle Novello, IEEE Associate Marketing Manager (edited by Alan J. Weissberger)

IEEE DiscoveryPoint for Communications is a machine-learning-powered, all-in-one platform specifically designed for engineers in the telecommunications industry.

Engineers designing communications products need access to the most up-to-date information—the latest research, lists of parts and components, and technical standards to help ensure that their design will work correctly and integrate seamlessly with other elements in the system. However, tracking down resources across multiple websites can be very time-consuming, the material might not be relevant or the sources could be questionable.

The IEEE DiscoveryPoint for Communications platform aims to solve those problems by providing one-stop access to searchable, curated content from trusted sources on just about any telecommunications topic. The platform library contains:

  • More than 1.4 million full-text research documents.
  • 14,000 technical standards.
  • 7,500 online courses.
  • 1,300 ebook titles.
  • 18.4 million parts and components data from manufacturers and distributors.
  • 1,300 industry and product news sources, blogs, and white papers.

The documents in our library are sourced from reputable publishers, including AT&T, the IEEE Xplore Digital Library, River Publishers, and John Wiley & Sons, Inc, ensuring the highest quality and reliability of the content. 

IEEE standards are also included in the library. The IEEE Standards Association has developed more than 900 communications related standards, including the popular IEEE 802.11 WiFi and IEEE 802.3 Ethernet standards.

With a single query users can find answers to technical questions by referencing relevant content from multiple high-quality sources, including full-text IEEE publications and standards.  IEEE DiscoveryPoint returns only the most applicable information to user search queries and then organizes the results in resource-specific channels, making it easier to browse different content types cohesively. It can also help accelerate project workflow with time-saving tools such as custom dashboards, alerts, saved searches, bookmarks, and collaboration tools to work through projects in less time and avoid duplicative queries.

“There’s nothing on the market right now that fully supports the design engineer’s workflow and delivers all the information needed in one place,” says Mark Barragry, senior product manager for corporate markets at IEEE Global Products and Marketing.

In designing IEEE DiscoveryPoint, Barragry comments, “We reconstructed the work process of a product design engineer and put together a set of resources that meet all the information needs they would have during a standard product-development cycle.”  Barragry adds that design engineers who tested the platform before launch said they liked that it came from IEEE, a trusted source.

The subscription-based product’s intuitive search engine saves users time by zeroing in on key concepts related to the topic they’re searching for. To get started, the user types a word, phrase, concept, the name of an author or company, or another term into the search bar. The search engine’s ranking algorithm analyzes the documents’ full text and metadata to find relevant material.

The results are organized into curated channels and categorized by resource types, such as research papers, standards, books, or industry news. For each search result, a machine-learning feature examines the document and generates a short summary of key points highlighted in the document. This solution allows time-strapped engineers to find relevant information more efficiently. 

In one testimonial about IEEE DiscoveryPoint, a director of technology development said, “I really appreciated the thought that went into this product. It’s an unmet need for people like me.”

Subscription prices depend on the size of the organization and the number of engineers and technical professionals using it. Contact us to learn more.

References:

https://discoverypoint.ieee.org/

https://innovate.ieee.org/introducing-ieee-discoverypoint-for-communications/

Practical Applications of IEEE DiscoveryPoint for Communications (IDPC)

 

e& UAE sets new world record with fastest 5G speed of 30.5Gbps

e& UAE network operator today announced registering the world’s fastest recorded speed of 30.5Gbps on its live 5G network, marking a significant milestone in its evolution towards 5G-Advanced. This global achievement was unveiled during a demonstration held at SAMENA Leaders’ Summit 2024, showcasing the successful aggregation of multiple carriers across high-band and mid-band spectrums (1600 MHz in mmWave and 300MHz in C-band), with network speeds reaching 30.5Gbps. This achievement underscores e& UAE’s commitment to delivering unparalleled user experiences, ensuring seamless connectivity to meet the increasing demand for a broad spectrum of digital services.

Khalid Murshed, Chief Technology and Information Officer of e& UAE, said, “We are thrilled to announce e& UAE’s achievement of the world’s fastest 5G network speed. With this accomplishment, we are poised to unleash the boundless potential of 5G technology, empowering innovative services and applications that will transform the fabric of society and the economy. “Aligned with the UAE’s ambitious digital agenda, e& UAE’s continuous investment in its network and technologies underscores its commitment to delivering premium digital services. By adopting the latest 5G solutions, we are providing our customers with premium digital experiences today but also paving the way for the 6G era by 2030 in line with the UAE’s recently unveiled 6G Roadmap by TDRA.”

As the demand for advanced network capabilities continues to surge, e& UAE is poised to revolutionize the landscape of connectivity in the UAE. This vision integrates state-of-the-art technologies and innovative services, including network slicing, private 5G network, RedCap, mobile VPN, and premium Fixed Wireless Access (FWA) leased lines, offering a superior experience for consumers, home, and enterprise customers alike. e& UAE has also harnessed the power of AI to deliver seamless and personalized experiences to every customer.

AI technologies will spearhead intelligent energy-saving and smart network planning initiatives, driving environmental responsibility and technological excellence to new heights. This monumental achievement solidifies e& UAE’s position as a trailblazer in the telecommunications industry, reaffirming its dedication to pushing the boundaries of innovation and delivering connectivity solutions for the digital era.

References:

https://www.wam.ae/en/article/b34rucp-uae-sets-new-world-record-with-fastest-speed

UAE network operator “etisalat by e&” achieves 5G mmWave distance milestone

UAE’s “etisalat by e&” announces first software defined quantum satellite network

du (UAE) deploys Microchip’s TimeProvider 4100 Grandmaster clock for advanced 5G network services

Nokia and du (UAE) complete 5G-Advanced RedCap trial; future of RedCap?

UScellular adds NetCloud from Cradlepoint to its 5G private network offerings; Buyout coming soon?

UScellular has added NetCloud Private Networks from Cradlepoint (part of Ericsson) to expand its portfolio of private cellular solutions. The company now offers Ericsson Private 5G and Ericsson’s Mission Critical Networks to its customers. By building on these capabilities, UScellular is able to support even more customers across varying areas of business.

Some existing private cellular network ecosystems are pulled together piece by piece from different providers, which requires additional training and agreements. This makes it difficult for enterprise IT teams to have seamless visibility across the entire network. NetCloud Private Networks is an end-to-end private cellular network solution that removes these complexities to simplify building and operating 5G private networks.

“With the addition of NetCloud Private Networks to our portfolio, we can better address business challenges for customers of all sizes to connect business, industry and mission critical applications,” said Kim Kerr, senior vice president, enterprise sales and operations for UScellular. “The agility, flexibility and scalability of NetCloud Private Networks helps improve coverage, security, mobility, and reliability for applications where Wi-Fi may not be enough.”

NetCloud Private Networks supports enterprises who need more scalable, reliable and secure connectivity than they are getting today with traditional Wi-Fi solutions. There is significant opportunity in warehouses, logistics facilities, outdoor storage yards, manufacturing and retail operations environments to provide more connectivity. This will alleviate manual work, improve safety, and provide increased visibility.

“UScellular is a leader in this space by showing how a public carrier enhances the value of private network solutions,” said Manish Tiwari, head of private cellular networks, Cradlepoint and Ericsson Enterprise Wireless Networks.

“By adding NetCloud Private Networks to their portfolio of Ericsson private networks solutions, UScellular unlocks new opportunities for organizations to have local network coverage and address their reliability and security challenges. With solutions available to cater to both OT and IT in industrial and business environments, their customers have a choice in adopting the right private network solution for their use-cases with secure, policy-based wireless connectivity at scale.”

………………………………………………………………………………………………………………………..

Separately,  The Wall Street Journal reported Thursday that T-Mobile is seeking to buy $2 billion worth of UScellular and take over some operations and wireless spectrum licenses. A deal could be announced this month, according to people familiar with the matter.

Meanwhile, Verizon is considering a deal for some of the rest of the company which is 80% owned by Telephone & Data Systems (TDS).   Last year, TDS put the wireless company’s operations up for sale, as it struggled with competition from national wireless telco rivals and cable-broadband providers.

Verizon is the biggest U.S. cellphone carrier by subscribers, while T-Mobile became the second largest soon after it bought rival Sprint. T-Mobile gained more customers this month after it completed its purchase of Mint Mobile, an upstart brand.

The rising value of wireless licenses is a driving force behind the deal. U.S. Cellular’s spectrum portfolio touches 30 states and covers about 51 million people, according to regulatory filings.

U.S. companies have spent more than $100 billion in recent years to secure airwaves to carry high-speed fifth-generation, or 5G, signals and are hunting for more. But the Federal Communications Commission has lacked the legal authority to auction new spectrum for more than a year. The drought has driven up the price of spectrum licenses at companies that already hold them.

The U.S. wireless business has also matured: Carriers have sold a smartphone subscription to most adults and many children, which leaves less room for expansion as the country’s population growth slows. AT&T and Verizon have meanwhile retreated from expensive bets on the media business to focus on their core cellphone and home-internet customers.

A once-crowded field of small, midsize and nationwide cellphone carriers in the U.S.  is now split among Verizon, T-Mobile and AT&T, leaving few players left to take over. As one of the last pieces left on the board, U.S. Cellular has long been an attractive takeover target. For many years, the home of the Chicago White Sox has been UScellular field.

………………………………………………………………………………………………………………………..

About UScellular:

UScellular offers wireless service to more than four million mostly rural customers across 21 states from Oregon to North Carolina. It also owns more than 4,000 cellular towers that weren’t part of the latest sale talks. The company has a market value of about $3 billion.

UScellular provides a range of solutions from public/private hybrid networks, MVNO models, localized data (aka CUPS) and custom VPN approaches. Private 5G offers unparalleled reliability, security and speed, enabling seamless communication and automation. For more information:

https://business.uscellular.com/products/private-cellular-networks/

References:

https://www.prnewswire.com/news-releases/uscellular-adds-cradlepoint-to-its-private-cellular-network-portfolio-302140782.html

https://www.wsj.com/business/telecom/t-mobile-verizon-in-talks-to-carve-up-u-s-cellular-46d1e5e6

Betacom and UScellular Introduce 1st Private/Public Hybrid 5G Network

Highlights of 3GPP Stage 1 Workshop on IMT 2030 (6G) Use Cases

This 3GPP May 8-10,2024 workshop held in Rotterdam, Nederlands brought the 3GPP community closer to the initiatives of regional and global research organizations, market partners (MRPs), operators’ associations and the ITU.

The workshop presented the opportunity for different communities to share their views on 6G/IMT2030 Use Cases. Those communities are Operators; Verticals; Regional Alliances and ITU.

The workshop was co-chaired by Mr. Jose Almodovar, SA1 Chair, and by Mr. Puneet Jain, SA Chair. It was supported by ETSI MCC, coordinated by Mr. Alain Sultan.

3GPP WG SA1 now has the task to define the 6G stage 1 requirements to be met by future 3GPP specifications.

Among the more important sessions were:

Day 1: Opening, Operators, Verticals

Speakers: Puneet Jain (Intel), SA Chair and Jose Almodovar (TNO), SA1 Chair


Operators:

Panel#1: “6G Drivers for Operators”

Moderator: Balazs Bertenyi (Nokia)
Panellists: Scott Migaldi (T-Mobile USA), Eric Hardouin (Orange), Xu Xiaodong (CMCC), Minsoo Na (SK Telecom), Shin-Ichi Isobe (NTT DoCoMo)

Panel#2 :  “6G Drivers for Verticals” 

Moderator: Toon Norp (KPN), former SA1 Chair
Panellists: Maxime Flament (5GAA), Andreas Müller (Bosch), Jordi Gimenez (5G-MAG), Nicolas Chuberre (Thales), Tero Pesonen (TCCA), Bruno Tomas (WBA)

 

Panel #2

Potential Drivers for 6G include:

•Security. Used in different contexts, both about network security and user data confidentiality (interesting to note that 5G Security is not widely deployed. It requires a 5G SA network few of which are commercially available).

• Maintaining continuity of service and robust security, especially crucial in times of crisis

• Identify all relevant new threat-factors for 6G, and develop mitigation solution (e.g. detection and protection against electromagnetic threats)

• Quantum-safe security mechanisms

• Network-design/performance: network optimization and automation (Intelligent Network management, Network Performance)

• Energy efficiency/saving/ sustainability

• AI-assisted air interface/ Radio Performance

• AI for improving positioning

• Enabling AI at the application level

• AI data management, model distribution for all AI-assisted “smart” areas (cities, industries, surgeries, robot control, manufacturing plant, rescue missions etc.

• AI as a Service (AIaaS)

• To implement a range of media’s personalization and customization (sport TV program, etc)


ITU & 3GPP:

Panel#4: ITU & 3GPP synergies for 6G

Moderator: Giovanni Romano (Novamint), ITU/3GPP liaison officer
Panellists: Hiroyuki Atarashi (NTT DOCOMO), ITU-R WP 5D Chair, Puneet Jain (3GPP SA Chair – Intel), Peter Schmitt (3GPP CT Chair – Huawei), Wanshi Chen (3GPP RAN Chair – Qualcomm), Jose Almodovar (SA1 Chair – TNO)

Closing:

Speakers: Puneet Jain (Intel), SA Chair; Jose Almodovar (TNO), SA1 Chair; Alain Sultan (ETSI MCC), SA1 Secretary & 3GPP Work Plan Coordinator

…………………………………………………………………………………………………………..

References:

https://www.3gpp.org/component/content/article/stage1-imt2030-uc-ws?catid=67&Itemid=101

https://www.3gpp.org/ftp/workshop/2024-05-08_3GPP_Stage1_IMT2030_UC_WS/Docs

https://www.3gpp.org/ftp/workshop/2024-05-08_3GPP_Stage1_IMT2030_UC_WS

NGMN issues ITU-R framework for IMT-2030 vs ITU-R WP5D Timeline for RIT/SRIT Standardization

IMT-2030 Technical Performance Requirements (TPR) from ITU-R WP5D

Juniper Research: Global 6G Connections to be 290M in 1st 2 years of service, but network interference problem looms large

Draft new ITU-R recommendation (not yet approved): M.[IMT.FRAMEWORK FOR 2030 AND BEYOND]

New ETSI Reports: 1.] Use cases for THz communications & 2.] Frequency bands of interest in the sub-THz and THz range

SK Telecom, DOCOMO, NTT and Nokia develop 6G AI-native air interface

Ericsson and IIT Kharagpur partner for joint research in AI and 6G

SK Telecom, Intel develop low-latency technology for 6G core network

ETSI Integrated Sensing and Communications ISG targets 6G

IEEE 5G/6G Innovation Testbed for developers, researchers and entrepreneurs

 

 

Page 11 of 210
1 9 10 11 12 13 210