5G Network Slicing
Ericsson, Intel and Microsoft demo 5G network slicing on a Windows laptop in Sweden
Ericsson, Intel and Microsoft successfully demonstrating end-to-end 5G standalone (SA) network slicing capabilities on a Windows laptop at Ericsson’s Lab in Sweden. This pioneering trial demonstrates the applicability of the technology on devices beyond smartphones, paving the way for new business/enterprise opportunities and for consumer use cases such as mobile gaming and collaboration applications for 5G cellular-connected laptops.
The trial used User Equipment Route Selection Policy (URSP), which enables devices to automatically select between different slices according to which application they are using. It also used Ericsson’s Dynamic Network Slicing Selection, Ericsson’s dual-mode 5G Core, and Ericsson’s RAN Slicing capabilities to ‘secure end-user service differentiation.’
Network slicing has long been seen as vital to capturing the value that a 5G network can provide for communications service providers (CSPs) and enterprises. The market for network slicing alone in the enterprise segment is projected at USD 300 billion by 2025, according to the GSMA. By demonstrating a single Windows 11 device can make use of multiple slices, which are used according to the on-device usage profiles and network policies defined at the CSP level, the partners show the flexibility and range of potential use cases available using this technology.
This trial illustrates the opportunities for 5G monetization beyond smartphone devices and opens the door to a wider 5G device ecosystem, allowing CSPs and other members of the telecoms and IT world to expand their horizons when considering opportunities to generate profitable use cases for 5G. Laptop type devices, in particular, are vital to enterprise productivity. The inclusion of Windows 11 laptops in the ranks of devices that can be used for commercializing 5G network slicing is a sign of the ecosystem maturing. Network slicing capabilities will benefit consumer and enterprise segments by defining specific Service Level Agreement per slice for existing and emerging Windows applications and use cases, such as real-time enterprise applications like Microsoft Teams and Office365, game/media streaming, and emerging AI and augmented reality/extended reality (AR/XR) applications.
Sibel Tombaz, Head of Product Line 5G RAN at Ericsson, said: “Expanding the range of devices for network slicing to include laptops will allow new business segments to create a variety of use cases for consumer and enterprises. We have shown, together with Intel and Microsoft, how ecosystem collaboration can open new possibilities. We will continue to strengthen Ericsson’s network slicing capabilities and work with industry partners to enable more applications on several devices, spreading the benefits of 5G in the consumer and enterprise segments.”
Ian LeGrow, Microsoft Corporate Vice-President of Core OS Innovation said: “We are thrilled to showcase our cutting-edge technology and its ability to deliver fast, dependable and secure 5G connectivity on Windows 11. Partnering with Intel and Ericsson only further solidifies our commitment to innovation and openness in our platform.”
This ground-breaking network slicing demo will be showcased jointly with Intel and Microsoft in the Ericsson Hall during MWC Barcelona 2023 from February 27 to March 2.
Andrew Wooden of telecoms.com wrote:
“There are so many tests and trials going on, and while technically seem to signal a bit of incremental progress each time, it can be easy to lose the context of what is supposed to be offered while digging around in the weeds of experimental telecoms architecture. That said if trials like this can keep the emphasis on how they provide some extra money-making opportunities for those in the business of flogging 5G, and some genuine benefits for the rest of us, perhaps it will gain some traction when they show it off in Barcelona.”
Source: Viavi Solutions
…………………………………………………………………………………………………………………………………………………………………..
References:
https://www.ericsson.com/en/news/2023/2/ericsson-intel-and-microsoft-show-network-slicing-capabilities-on-a-laptop-for-consumer-and-enterprise-applications
https://www.ericsson.com/en/network-slicing#dynamicnetworksliceselection
https://www.ericsson.com/en/core-network/5g-core
https://telecoms.com/519733/ericsson-intel-and-microsoft-slice-up-a-network-and-feed-it-to-a-laptop/
Ericsson and Nokia demonstrate 5G Network Slicing on Google Pixel 6 Pro phones running Android 13 mobile OS
Samsung and KDDI complete SLA network slicing field trial on 5G SA network in Japan
5G Network Slicing Tutorial + Ericsson releases 5G RAN slicing software
https://www.viavisolutions.com/en-us/5g-network-slicing
Network Slicing and 5G: Why it’s important, ITU-T SG 13 work, related IEEE ComSoc paper abstracts/overviews
Samsung and KDDI complete SLA network slicing field trial on 5G SA network in Japan
Samsung Electronics and KDDI announced the successful demonstration of Service Level Agreements (SLA) assurance network slicing in a field trial conducted in Tokyo, Japan. For the first time in the industry, the companies proved their capabilities to generate multiple network slices using a RAN Intelligent Controller (RIC) on a live commercial 5G Standalone (SA) network. The RIC, provided by Samsung in this field trial, is a software-based component of the Open RAN architecture that optimizes the radio resources of the RAN to improve the overall network quality.
Network slicing (which requires a 5G SA core network) enables multiple virtual networks to be created within a single physical network infrastructure, where each slice is dedicated for a specific application or service — serving different purposes. For instance, 5G SA network operators can create a low latency slice for automated vehicles, an IoT slice for smart factories and a high bandwidth slice for live video streaming — all within the same network. This means that a single 5G SA network can support a broad mix of use cases simultaneously, accelerating the delivery of new services and meeting the tailored demands of various enterprises and consumers.
“Network slicing will help us activate a wide range of services that require high performance and low latency, benefitting both consumers and businesses,” said Toshikazu Yokai, Managing Executive Officer, General Manager of Mobile Network Technical Development Division at KDDI. “Working with Samsung, we continue to deliver the most innovative technologies to enhance customer experiences.”
Through this field trial conducted in Q4 of 2022, KDDI and Samsung proved their capabilities of SLA assurance to generate multiple network slices that meet SLA requirements, guaranteeing specific performance parameters — such as low latency and high throughput — for each application. Samsung also proved the technical feasibility of multiple user equipment (UE)-based network slices with quality assurance using the RIC, which performs advanced control of RAN as defined by the O-RAN Alliance.
“Network slicing will open up countless opportunities, by allowing KDDI to offer tailor-made, high-performance connectivity, along with new capabilities and services, to its customers,” Junehee Lee, Executive Vice President, Head of Global Sales & Marketing, Networks Business at Samsung Electronics. “This demonstration is another meaningful step forward in our efforts to advance technological innovation and enrich network services. We’re excited to have accomplished this together with KDDI and look forward to continued collaboration.”
For more than a decade, the two companies have been working together, hitting major 5G networks milestones that include: KDDI’s selection of Samsung as a 5G network solutions provider, end-to-end 5G network slicing demonstration in the lab, 5G network rollout on 700MHz and the deployment of 5G vRAN on KDDI’s commercial network.
Samsung has pioneered the successful delivery of 5G end-to-end solutions including chipsets, radios and core. Through ongoing research and development, Samsung drives the industry to advance 5G networks with its market-leading product portfolio from virtualized RAN and Core to private network solutions and AI-powered automation tools. The company is currently providing network solutions to mobile operators that deliver connectivity to hundreds of millions of users around the world.
References:
Ericsson and Nokia demonstrate 5G Network Slicing on Google Pixel 6 Pro phones running Android 13 mobile OS
Nokia and Safaricom complete Africa’s first Fixed Wireless Access (FWA) 5G network slicing trial
Deutsche Telekom demos end to end network slicing; plans ‘multivendor’ open RAN launch in 2023
Is 5G network slicing dead before arrival? Replaced by private 5G?
Telefonica in 800 Gbps trial and network slicing pilot test
5G Network Slicing Tutorial + Ericsson releases 5G RAN slicing software
Network Slicing and 5G: Why it’s important, ITU-T SG 13 work, related IEEE ComSoc paper abstracts/overviews
5G is a big letdown and took a “back seat” at CES 2023; U.S. national spectrum policy in the works
“It’s Not Just You: 5G Is a Big Letdown,” is the title of a Wall Street Journal on-line article published today (January 11, 2023). Author Joanna Stern writes:
I turned off Verizon’s red down pointing triangle 5G on my iPhone—and barely noticed a difference. The 4G LTE performance and coverage felt just about the same.
Three years since the U.S. cellular carriers lit up their next-generation networks and promised to change the game, the game hasn’t changed. And if you’re among the millions of Americans who recently upgraded, you probably already know that. In 2022, 61% of U.S. cellular customers accessed 5G networks, according to Global Wireless Solutions, a network testing and research company.
On Verizon’s Ultra Wideband network, I got 500 Mbps down. But I didn’t notice a difference when streaming Netflix, watching TikTok, loading websites or sending messages. You don’t need a fire hose to extinguish a candle.
Where you might see a difference is during commuting hours and other times of heavy congestion, Chetan Sharma, a telecom-industry analyst, told me. A Verizon spokesman said that 5G’s higher data capacity helps at concerts, sporting events and other crowded areas where everyone is trying to download or upload photos or videos.
“As cars, smart home standards, and so many screens took center stage at this year’s [CES] show, 5G took a back seat,” concludes a Verge article titled, “Where was 5G at CES?” “After years of hype, 5G was seemingly a no-show at CES 2023.” The Verge article continues knocking 5G (and for good reason):
For starters, we’re all sick of hearing about it. And CES has a unique way of rallying around a technology one year and then leaving it for dead the next.
And there was always a time limit on 5G’s newsworthiness — at a certain point, when it becomes the prevailing wireless technology, it’s not going to be “5G the new thing;” it’ll just be “the internet you use when you’re not on Wi-Fi.”
More than any of the above, the time has passed where wireless CEOs feel they need to sell 5G to the general public (and, of course, their shareholders). It’s not a niche new service anymore; it’s the default option (in the U.S. at least). Basically every new phone sold on their shelves is 5G compatible, and mid-band 5G finally exists on all major carriers in large parts of the US. The next time you walk into a wireless store to buy a new phone or sign up for a new service, you’ll have a very hard time leaving without a 5G device and plan, regardless of whether you really wanted them.
So now we have 5G phones in our hands, 5G networks are here, and… not much has changed. Maybe web pages load a little faster — hardly robot surgery. What gives? The thing is, rolling out 5G is a long ongoing process. The hype made it seem like all the good stuff was just around the corner, but truthfully, it was (and still is) years and years away.
So yes, you may have a 5G icon on your phone, but the most transformative aspects of 5G are supposedly still in the works. That’s a tough message to sell in a flashy keynote, especially when everyone in the room has access to the technology you’re talking about.
……………………………………………………………………………………………………………………………………………………………………………
The IEEE Techblog in general, and this author in particular, have been pounding the table for years that 5G would be a colossal tech train wreck for these reasons:
1. 3GPP Release 16 URLLC in the RAN spec and performance testing have not been completed. Hence the URLLC in 3GPP Release 15 and ITU M.2150 recommendation do not meet the critically important URLLC ITU M.2410 performance requirements for ultra high reliability or ultra low latency. Here is the latest status of URLLC in the RAN in the 3GPP Release 16 specification as of 6 January 2023:
–Physical Layer Enhancements for NR Ultra-Reliable and Low Latency Communication (URLLC) NR_L1enh_URLLC 1 Rel-16 R1 6/15/2018 12/22/2022 96% complete RP-19158
–UE Conformance Test Aspects – Physical Layer Enhancements for NR URLLC NR_L1enh_URLLC-UEConTest 2 Rel-16 R5 12/14/2020 12/22/2022 90% complete RP-202566 RP-221485
2. There is no implementation standard for 5G SA Core network– only 3GPP reference architecture specs which list alternative implementation schemes, most of which are “cloud native.” That resulted in a lot of telco confusion that delayed the roll out of 5G SA networks such that most 5G deployed today is NSA which uses 4G LTE core network and functions. Dell’Oro Group’s Dave Bolan wrote in a white paper:
The 5G Core is the key to monetizing the 5G SA network bringing MNOs (Mobile Network Operators) into the modern cloud era, allowing the MNO to (1) offer new services quickly with Cloud-Native Network Functions, (2) add Network Slices on demand for mobile private networks, and (3) address latency-sensitive applications with MEC. These new opportunities cannot be addressed by 4G or 5G NSA networks, and the sooner an MNO embraces 5G SA networking, the closer it will be to reaping new revenue streams.
3. ALL of the 3GPP defined 5G functions and features, require 5G SA Core network. Those 5G functions include 5G security, network slicing, and automation/virtualization. MEC also needs a 5G SA Core network to work efficiently with a 5G RAN. There are relatively few 5G SA Core networks deployed and for those that are, there are few of the highly touted 5G functions available, e.g. T-Mobile is a case in point.
4. There is no standard for roaming between 5G networks, especially not when there are different versions of 5G SA core networks- each requiring a different software download for 5G endpoint devices. Hence, 5G is not truly mobile in the sense of portability. 5G is probably best used for FWA or local M2M/IoT communications where there are no roaming requirements.
5. There is no standard for 5G Frequency Arrangements (ITU M.1036 revision 6) which are critically important for all the mmWave frequencies specified at WRC 19 for 5G, but frequency arrangements not yet agreed upon by ITU-R WP 5D.
6. 5G base station and endpoint device power consumption is very high, especially for the mmWave frequencies which deliver the fastest 5G speeds.
………………………………………………………………………………………………………………………………………………………………………………..
5G in India:
Mike Dano of Light Reading writes that the U.S. is working on a national spectrum policy, presumably for 5G (and later) 6G.
The White House is working through the NTIA to develop a national spectrum strategy that would cover 5G, 6G and other spectrum users.
According to FierceWireless, National Telecommunications and Information Administration (NTIA) chief Alan Davidson said that work would continue throughout this year. Speaking at last week’s CES conference in Las Vegas, Davidson reminded the audience that the NTIA manages federal spectrum use and serves as the President’s advisor on spectrum policy. That means that the NTIA works together with the FCC to manage spectrum when a federal user is involved. From a practical perspective, the Department of Defense has historically held a lot of valuable spectrum for national security use, making the DoD an incumbent user in many spectrum bands.
The NTIA manages federal spectrum use and serves as the President’s advisor on spectrum policy. (Image Credit: Gerd Altmann from Pixabay)
In 2023 NTIA will be working with federal agency partners to develop a national spectrum strategy, which will provide a long-term plan to meet both commercial and federal spectrum needs.
…………………………………………………………………………………………………………………………………………………………………………………….
Officials from the National Oceanic and Atmospheric Administration (NOAA) said they’re taking stock of the agency’s spectrum usage in order to potentially release some for commercial uses, according to SpaceNews. “It is an ongoing challenge. We expect to have to fight for maintenance of spectrum. But at the same time, we realize we’re not going to win every fight,” said Steve Volz, NOAA Satellite and Information Service assistant administrator on January 11th at the American Meteorological Society meeting.
Spectrum for 5G and 6G is a critical national policy topic:
“Continuing to meet increasing consumer demand and expectations, ensure continued growth of the US economy, bridge the digital divide, and facilitate global leadership on next-generation technologies requires sufficient spectrum resources,” wrote the CTIA, the US wireless industry’s main trade association. “Accordingly, it is imperative that the commission continually replenish its pipeline of spectrum allocated for commercial mobile and fixed broadband services.”
“America needs a national strategy to make sure there is enough spectrum to build out 5G networks and not fall behind China,” wrote Mike Rogers, a former Congressional representative from Michigan who authored a report critical of China’s Huawei, in The Hill.
Joel Thayer, of the Digital Progress Institute, agreed. “If we cannot get our act together and follow an all-of-the-above spectrum strategy, we cede the race to 5G and even 6G to China. Full stop,” he wrote in The Hill.
Such arguments strongly echo the “race to 5G” rhetoric that was ubiquitous in policy circles in the early days of 5G.
…………………………………………………………………………………………………………………………………………………………………………………………………………………………………..
References:
https://www.wsj.com/articles/its-not-just-you-5g-is-a-big-letdown-11673441300
https://www.theverge.com/2023/1/7/23541118/5g-ces-2023-qualcomm-iot-wireless
https://www.fiercewireless.com/wireless/ntia-develop-national-spectrum-strategy-2023
Another Opinion: 5G Fails to Deliver on Promises and Potential
Cheerleading from 5G Americas contradicts disappointing financial results from 5G telcos
Ericsson expects RAN market to be flat with 5G build-out still in its early days; U.S. cellular industry growth to slow in 2023
Ookla: State of 5G Worldwide in 2022 & Countries Where 5G is Not Available
SDx Central: 5G Disappoints at MWC 2021
Performance analysis of big 3 U.S. mobile operators; 5G is disappointing customers
Another Opinion: 5G Fails to Deliver on Promises and Potential
Introduction:
For many years now, this author has repeatedly stated that 5G would be the biggest train wreck in all of tech history. That is still the case. It’s primarily due to the lack of ITU standards (really only one- ITU M.2150) and 5G core network implementation specs (vs 5G network architecture) from 3GPP.
We’ve noted that the few 5G SA core networks deployed are all different with no interoperability or roaming between networks. I can’t emphasize enough that ALL 3GPP defined 5G functions and features (including security and network slicing) require a 5G SA core network. Yet most of the deployed 5G networks are NSA which use a 4G infrastructure for everything other than the RAN.
It also must be emphasized that the 5G URLLC Physical layer specified in ITU-R M.2150 does not meet the performance requirements in ITU-R M.2410 as the URLLC spec is based on 3GPP Release 15. Astonishingly, the 3GPP Release 16 work item “URLLC in the RAN” has yet to be completed, despite Release 16 being “frozen” in June 2020 (2 1/2 years ago). The official name of that Release 16 work item is “Physical Layer Enhancements for NR Ultra-Reliable and Low Latency Communication (URLLC)” with the latest spec version dated June 23, 2022. That work item is based on the outcome of the study items resulting in TR 38.824 and TR 38.825. It specifies PDCCH enhancements, UCI enhancements, PUSCH enhancements, enhanced inter UE TX prioritization/multiplexing and enhanced UL configured grant transmission.
Finally, revision 6 of ITU-R recommendation M.1036 on terrestrial 5G frequency arrangements (especially for mmWave), still has not been agreed upon by ITU-R WP5D. That has resulted in a “frequency free for all,” where each country is defining their own set of 5G mmWave frequencies which inhibits 5G end point device interoperability.
……………………………………………………………………………………………………………………………………………………………………..
In an article titled, 5G Market Growth, Mohamad Hashisho provides his view of why 5G has not lived up to its promise and potential.
Standalone 5G Is Yet to Breakout:
5G market growth still needs to feel as imposing as many imagined it. A technology created to replace previous generations still relies on their infrastructure. Standalone (SA) 5G is unrestricted by the limits of the prior generation of telecommunications technology because it does not rely on the already-existing 4G infrastructure. As a result, it can deliver the fast speeds and low latency that 5G networks have consistently promised. Clearly, standalone(SA) 5G is the way to go, so why do we not see effective implementation and marketing for it?
The numerous challenges businesses encounter while using SA are alluded to in the various telco comments about device availability, carrier aggregation, and infrastructure upgrades. The 5G New Radio system is connected to the current 4G core, the network’s command center, with older NSA. As its name suggests, SA sweeps this crutch aside and substitutes a new 5G core. But operators face several difficulties when they push it out, according to Brown. The first is the challenge of creating “cloud-native” systems, as they are known in the industry. Most operators now want to fully utilize containers, microservices, and other Internet-world technologies rather than simply virtualizing their networks. With these, networks risk being less efficient and easier to automate, and new services may take longer to launch. But the transition is proving to be challenging.
Overpromising, Yet to Deliver:
5G came out of the corner swinging. Huge promises were thrown around whenever the subject of 5g was discussed. It has been a while since 5G came to fruition, yet its market growth remain humble. Some might say that the bark was way more extensive than the bite. While some of these promises were delivered, they weren’t as grand as the ones yet to happen.
Speed was one of the main promises of 5G. And while some argue that this promise is fulfilled, others might say otherwise. Speeds are yet to reach speeds that can eclipse those of 4G. It is not only about speeds, though. It is about the availability of it. The high-speed services of 5G networks are only available in some places. Its been years and many regions are yet to receive proper 5G services. Simply put, a large portion of the dissatisfaction surrounding 5G can be attributed to the failure to fully deploy the infrastructure and the development of applications that fully utilize 5G.
5G of Tomorrow Struggles With Its Today:
5G is, without a doubt, the way to go for the future, but does its present state reflect that? Maybe. That is the issue. Years into its adoption, the answer should be decisive. Telcos might see potential in the maybes and work based on tomorrow’s potential. Consumers won’t be as patient. The consumers need the promised services now. You need to keep your customer base around with promises of the future. Especially when 4G LTE did the job well, really well.
Moreover, some areas in the US, not in struggling countries, have speeds slower than 4G LTE. Some 5G phones struggle to do the minimum tasks. Phones have to stick to specific chips capable of 5G support. But it is not about the small scale. Let’s think big, going back to the big promises 5G made. Smart cities, big-scale internet activities happening in real-time. IoT integration everywhere, controlling drones and robots from across the world. Automated cars as well, 5G was promised to deliver on all that, today and not tomorrow, but here we are.
Finally, the marketing was hit and miss, more miss, to be frank. Most consumers pay more to be 5G ready, while 5G still needs to be truly prepared. It’s hard to keep people interested when 4G is doing great. The only thing that the people needed was consistency, and sadly 5G is less consistent than some would hope.
Concluding Thoughts:
Lastly, innovation waits for none. This even includes 5G and 5G market growth. There are talks, even more than talks, about 6G. China is pushing for 6G supremacy, while Nokia and japan are starting the conversation about 7G. A major oversight that 5G missed was range. 5 G does great over small distances.
When the promises were massive in scale and global, you practically shot yourself in the foot. Time is running out for 5G, or is it pressuring 5G to live up to its potential?
……………………………………………………………………………………………………………………………………………………………………………
References:
https://insidetelecom.com/5g-market-growth/
https://www.itu.int/rec/R-REC-M.2150/en
https://www.itu.int/pub/R-REP-M.2410
https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1036-6-201910-I!!PDF-E.pdf
https://www.3gpp.org/specifications-technologies/releases/release-16
Ericsson and Nokia demonstrate 5G Network Slicing on Google Pixel 6 Pro phones running Android 13 mobile OS
In separate announcements today, Ericsson and Nokia stated they had completed 5G Network Slicing trials with Google on Pixel 6 Pro smart phones running the Android 13 mobile OS [1.].
Network Slicing is perhaps the most highly touted benefits of 5G, but its commercial realization is taking much longer than most of the 5G cheerleaders expected. That is because Network Slicing, like all 5G features, can only be realized on a 5G standalone (SA) network, very few of which have been deployed by wireless network operators. Network slicing software must be resident in the 5G SA Core network and the 5G endpoint device, in this case the Google Pixel 6 Pro smartphone.
Note 1. On August 15, 2022, Google released Android 13 -the latest version of its mobile OS. It comes with a number of new features and improvements, as well as offers better security and performance fixes. However, it’s implementation on smartphones will be fragmented and slow according to this blog post.
For devices running Android 12 or higher, Android provides support for 5G Network Slicing, the use of network virtualization to divide single network connections into multiple distinct virtual connections that provide different amounts of resources to different types of traffic. 5G network slicing allows network operators to dedicate a portion of the network to providing specific features for a particular segment of customers. Android 12 introduces the following 5G enterprise network slicing capabilities, which network operators can provide to their enterprise clients.
Android 12 introduces support for 5G network slicing through additions to the telephony codebase in the Android Open Source Project (AOSP) and the Tethering module to incorporate existing connectivity APIs that are required for network slicing.
Here’s a functional block diagram depicting 5G network slicing architecture in AOSP:
Image Credit: Android Open Source Project
1. Ericsson and Google demonstrated support on Ericsson network infrastructure for multiple slices on a single device running Android 13, supporting both enterprise (work profile) and consumer applications. In addition, for the first time, a slice for carrier branded services will allow communications service providers (CSP) to provide extra flexibility for customized offerings and capabilities. A single device can make use of multiple slices, which are used according to the on-device user profiles and network policies defined at the CSP level.
The results were achieved in an Interoperability Device Testing (IODT) environment on Google Pixel 6 (Pro) devices using Android 13. The new release sees an expansion of the capabilities for enterprises assigning network slicing to applications through User Equipment Route Selection Policy (URSP ) rules, which is the feature that enables one device using Android to connect to multiple network slices simultaneously.
Two different types of slices were made available on a device’s consumer profile, apart from the default mobile broadband (MBB) slice. App developers can now request what connectivity category (latency or bandwidth) their app will need and then an appropriate slice, whose characteristics are defined by the mobile network, will be selected. In this way either latency or bandwidth can be prioritized, according to the app’s requirements. For example, the app could use a low-latency slice that has been pre-defined by the mobile network for online gaming, or a pre-defined high-bandwidth slice to stream or take part in high-definition video calling.
In an expansion of the network slicing support offered by Android 12, Android 13 will also allow for up to five enterprise-defined slices to be used by the device’s work profile. In situations where no USRP rules are available, carriers can configure their network so traffic from work profile apps can revert to a pre-configured enterprise APN (Access Point Name) connection – meaning the device will always keep a separate mobile data connection for enterprise- related traffic even if the network does not support URSP delivery.
Monica Zethzon, Head of Solution Area Packet Core at Ericsson said: “As carriers and enterprises seek a return on their investment in 5G networks, the ability to provide for a wide and varied selection of use cases is of crucial importance. Communications Service Providers and enterprises who can offer customers the flexibility to take advantage of tailored network slices for both work and personal profiles on a single Android device are opening up a vast reserve of different uses of those devices. By confirming that the new network slicing capabilities offered by Android 13 will work fully with Ericsson network technology, we are marking a significant step forward in helping the full mobile ecosystem realize the true value of 5G.”
Ericsson and partners have delivered multiple pioneering network slicing projects using the Android 12 device ecosystem. In July, Telefonica and Ericsson announced a breakthrough in end-to-end, automated network slicing in 5G Standalone mode.
2. Nokia and Google announced that they have successfully trialed innovative network slice selection functionality on 4G/5G networks using UE Route Selection Policy (URSP) [2.] technology and Google Pixel 6 (Pro) phones running Android 13. Once deployed, the solution will enable operators to provide new 5G network slicing services and enhance the customer application experience of devices with Android 13. Specifically, URSP capabilities enable a smartphone to connect to multiple network slices simultaneously via different enterprise and consumer applications depending on a subscriber’s specific requirements. The trial, which took place at Nokia’s network slicing development center in Tampere, Finland, also included LTE-5G New Radio slice interworking functionality. This will enable operators to maximally utilize existing network assets such as spectrum and coverage.
Note 2. User Equipment Route Selection (URSP) is the feature that enables one device using Android to connect to multiple network slices simultaneously. It’s a feature that both Nokia and Google are supporting.
URSP capabilities extend network slicing to new types of applications and use cases, allowing network slices to be tailored based on network performance, traffic routing, latency, and security. For example, an enterprise customer could send business-sensitive information using a secure and high-performing network slice while participating in a video call using another slice at the same time. Additionally, consumers could receive personalized network slicing services for example for cloud gaming or high-quality video streaming. The URSP-based network slicing solution is also compatible with Nokia’s new 5G radio resource allocation mechanisms as well as slice continuity capabilities over 4G and 5G networks.
The trial was conducted using Nokia’s end-to-end 4G/5G network slicing product portfolio across RAN-transport-core as well as related control and management systems. The trial included 5G network slice selection and connectivity based on enterprise and consumer application categories as well as 5G NR-LTE slice interworking functionalities.
Nokia is the industry leader in 4G/5G network slicing and was the first to demonstrate 4G/5G network slicing across RAN-Transport-Core with management and assurance. Nokia’s network slicing solution supports all LTE, 5G NSA, and 5G SA devices, enabling mobile operators to utilize a huge device ecosystem and provide slice continuity over 4G and 5G.
Nokia has carried out several live network deployments and trials with Nokia’s global customer base including deployments of new slicing capabilities such as Edge Slicing in Virtual Private Networks, LTE-NSA-SA end-to-end network slicing, Fixed Wireless Access slicing, Sliced Private Wireless as well as Slice Management Automation and Orchestration.
Ari Kynäslahti, Head of Strategy and Technology at Nokia Mobile Networks, said: “New application-based URSP slicing solutions widen operator’s 5G network business opportunities. We are excited to develop and test new standards-based URSP technologies with Android that will ensure that our customers can provide leading-edge enterprise and consumer services using Android devices and Nokia’s 4G/5G networks.”
Resources:
…………………………………………………………………………………………………………………………………………………………….
Addendum:
- Google’s Pixel 6 and Pixel 6 Pro, which run on Android 12, are the first two devices certified on Rogers 5G SA network in Canada, which was deployed in October 2021. However, 5G network slicing hasn’t been announced yet.
- Telia deployed a commercial 5G standalone network in Finland using gear from Nokia and the operator highlighted its ability to introduce network slicing now that it has a 5G SA core.
- OPPO, a Chinese consumer electronics and mobile communications company headquartered in Dongguan, Guangdong, recently demonstrated the pre-commercial 5G enterprise network slicing product at its 5G Communications Lab in collaboration with Ericsson and Qualcomm. OPPO has been conducting research and development in 5G network slicing together with network operators and other partners for a number of years now.
- Earlier this month, Nokia and Safaricom completed Africa’s first Fixed Wireless Access (FWA) 5G network slicing trial.
References:
https://source.android.com/docs/core/connect/5g-slicing
Nokia and Safaricom complete Africa’s first Fixed Wireless Access (FWA) 5G network slicing trial
Nokia and Safaricom complete Africa’s first Fixed Wireless Access (FWA) 5G network slicing trial
Nokia today announced that it has successfully piloted its 4G and 5G Fixed Wireless Access (FWA) network slicing with mobile operator, Safaricom on its live commercial network. This is the first-time 4G/5G network slicing has been successfully achieved in Africa. The trial utilized a multi-vendor network environment and included RAN, transport and core as well as software upgrades to a range of Nokia’s products and services.
The successful trial demonstrates that Safaricom is now poised to support new types of enterprise network services, including fast lane internet access and application slicing. In addition, Nokia is enabling secured FWA slice connectivity to enterprise locations, as well as to private or public application clouds.
The multi-vendor pilot which took place in Kenya’s Western Region, strengthens the strategic partnership between the two companies, with Nokia already providing a wide variety of services and solutions. The pilot demonstrated a number of solutions including Nokia’s AirScale 4G/5G base stations, the NetAct network management and assurance system and Nokia’s FastMile 4G/5G CPE.
Network slicing (which requires a 5G SA Core Network) enables operators the ability to divide a network into multiple virtual slices, which can be optimized for a specific target application or service. The end user of each network slice can then be serviced with different priorities, routing, levels of network performance and security capabilities. Slices can be managed and deployed in minutes, and each one has key performance indicators used for service assurance.
Nokia’s 4G/5G network slicing solution (SORRY, no such thing as 4G network slicing), which received a prestigious award from GTI 2021 in the ‘Innovative Breakthrough in Mobile Technology’ category, supports LTE, 5G NSA and 5G SA technologies with slice service continuity between the networks. This enables slicing services for all LTE and 5G devices.
James Maitai, Network Director, Safaricom, said: “We are proud to have hosted Africa’s first successful pilot of 4G/5G FWA slicing on our network, and looking forward to tailoring our service offerings to individual customers and industries, to meet their needs for high-speed connectivity precisely and without unnecessary cost. Nokia’s expertise has been key to this success, and we anticipate many more strategic wins in this area as our business expands.”
Ramy Hashem, Head of Safaricom Customer Team at Nokia, said: “It is great to have successfully completed this pilot with Safaricom, which is a huge step forward in providing Safaricom with state-of-the-art connectivity. Early experience of new slicing technology is invaluable in understanding the new business opportunities it enables. Nokia was the first vendor to offer a slicing solution and we are looking forward to continuing our partnership with Safaricom in providing world-class 4G and 5G network slicing services to its customers.”
Resources:
Webpage: Automated network slicing
Webpage: 5G Edge Slicing
Webpage: Nokia AirScale
Webpage: Nokia FastMile
Webpage: Nokia 5G RAN
Webpage: Nokia NetAct
Deutsche Telekom demos end to end network slicing; plans ‘multivendor’ open RAN launch in 2023
DT and Ericsson recently demonstrated an impressive proof of concept implementation: they established connectivity with guaranteed quality of service (QoS) between Germany and Poland via 5G end-to-end network slicing. With an SD-WAN solution from Deutsche Telekom, the data connection can be flexibly controlled and managed via a customer portal. The solution ensures that different service parameters in the network can be operated across country borders. At the same time, network resources are flexibly allocated. This approach is being presented for the first time worldwide. It is particularly advantageous for global companies that operate latency-critical applications at different, international locations.
End-to-end network slicing, which requires a 5G SA core network, is a key enabler for unlocking 5G opportunities. It’s been highly touted to drive business model innovation and new use cases across various industry segments. 5G slicing will enable use cases that require specific resources and QoS levels. Globally operating enterprise are more and more seeing the need for uniform connectivity characteristics to serve their applications in different markets. Some of the latency-critical business applications that demand consistent international connectivity performance are related to broadcasting, logistics, and automotive telematics.
In this trial, the QoS connectivity was extended from Germany to Poland using a 5G slicing setup that is based on commercial grade Ericsson 5G Standalone (SA) radio and core network infrastructure and a Deutsche Telekom commercial SD-WAN solution. The home operator-controlled User Plane Function (UPF) is placed in Poland as the visited country and the entire setup is managed by an Ericsson orchestrator integrated with a Deutsche Telekom business support system via open TM Forum APIs. Combining 5G slicing and SD-WAN technology allows flexible connectivity establishment and control, while traffic breakout close to the application server in visited countries enables low latency.
…………………………………………………………………………………………………………………………………..
According to Light Reading, Deutsche Telekom (DT) has already issued a request for quotation (RFQ) to Open RAN vendors and is currently selecting partners for a commercial rollout next year. NEC – a Japanese vendor of radio units (among other things)- and Mavenir -a U.S. developer of baseband software-were mentioned as Open RAN Town participants (and likely DT RFQ respondents). “It is a multivendor setup,” said DT’s Claudia Nemat.
However, there are obstacles that Open RAN must overcome to be widely deployed. In particular, energy efficiency. Deutsche Telekom, along with most other big operators, is determined to reduce its carbon footprint and slash energy bills. Open RAN “is less energy efficient than today’s RAN technology,” Ms. Nemat said. The use of x86 general-purpose microprocessors in virtualized, open RAN deployments seems to be responsible for this inefficiency.
“If you have an ASIC [application-specific integrated circuit] for baseband processing, it is always cheaper than using a general-purpose microprocessor like an Intel processor,” said Alex Choi, Deutsche Telekom’s head of strategy and technology innovation, two years ago.
One option is to use ASICs and other chips as hardware accelerators for more efficient baseband processing. Companies including Marvell, Nvidia and Qualcomm all have products in development for sale as merchant silicon in open RAN deployments. Nemat, noted a breakthroughs with Intel.
“We achieved a reduction of electricity consumption of around minus 30%. For us, that is a big step forward for commercial deployment.”
Light Reading’s Iain Morris, provided this assessment:
Even so, a commercial open RAN deployment involving companies like NEC and Mavenir is hard to imagine. Any widespread rollout of their technologies would mean swapping out equipment recently supplied by Ericsson or Huawei (DT’s current 5G network equipment vendors), unless Deutsche Telekom plans to run two parallel networks. Either option would be costly.
Far likelier is that a 2023 deployment will be very limited. Other operators including the UK’s BT and France’s Orange have talked about using open RAN initially for small cells – designed to provide a coverage boost in specific locations.
A private network for a factory is one possible example. Outside Germany, of course, there may be a bigger short-term opportunity in Deutsche Telekom markets where 5G has not been as widely deployed.
In late June 2021, Deutsche Telekom switched on its ‘O-RAN Town’ deployment in Neubrandenburg, Germany. O-RAN Town is a multi-vendor open RAN network that will deliver open RAN based 4G and 5G services across up to 25 sites. The first sites are now deployed and integrated into the live network of Telekom Germany. This includes Europe’s first integration of massive MIMO (mMIMO) radio units using O-RAN open fronthaul interfaces to connect to the virtualized RAN software.
Ms. Nemat said at the time, “Open RAN is about increasing flexibility, choice and reinvigorating our industry to bring in innovation for the benefit our customers. Switching on our O-RAN Town including massive MIMO is a pivotal moment on our journey to drive the development of open RAN as a competitive solution for macro deployment at scale. This is just the start. We will expand O-RAN Town over time with a diverse set of supplier partners to further develop our operational experience of high-performance multi-vendor open RAN.”
……………………………………………………………………………………………………………………………………………………………………..
In November 2021, Deutsche Telekom announced it was taking the lead in a new Open lab to accelerate network disaggregation and Open RAN. The German Federal Ministry for Transport and Digital Infrastructure (BMVI) is financing the Lab with 17 million Euros and that’s to be matched by approximately a 17 million Euro investment from a consortium under the leadership of Deutsche Telekom (DT).
The lab will furthermore be supported by and working closely with OCP (Open Compute Project), ONF (Open Networking Foundation), ONAP (Open Network Automation Platform), the O-RAN Alliance and the TIP (Telecom Infra Project). Partners and supporters together form the user forum, which is open for participation by other interested companies, especially SMEs, working on applications as well as equipment and development. As an open lab it is built for collaboration within the wider telecommunications community. The i14y Lab Berlin will be the central location and core node of satellite locations such as Düsseldorf and Munich. Other highlights:
- Testing and integrating components of disaggregated networks in the lab to accelerate time to market of open network technology for the multi-vendor network of the future.
- The lab has already started operations at DT Innovation Campus Winterfeldtstraße
- Important foundation for building a European and German ecosystem of vendors and system integrators
A recent Research Nester report predicts a market size of $21 billion for O-RAN in 2028.
[Source: https://www.researchnester.com/reports/open-radio-access-network-market/2781].
References:
https://www.telekom.com/en/media/media-information/archive/telekom-at-mwc-barcelona-2022-647894
https://www.telekom.com/en/media/media-information/archive/global-5g-network-slicing-648218
5G Security explained: 3GPP 5G core network SBA and Security Mechanisms
by Akash Tripathi with Alan J Weissberger
Introduction:
5G networks were deployed in increasing numbers this past year. As of December 2021, GSA had identified 481 operators in 144 countries or territories that were investing in 5G, up from 412 operators at the end of 2020. Of those, a total of 189 operators in 74 countries/territories had launched one or more 3GPP-compliant 5G services, up by 40% from 135 from one year ago.
Despite 5G’s much advertised potential, there are significant security risks, especially with a “cloud native” service based architecture, which we explain in this article.
New 5G services, functions and features have posed new challenges for 5G network operators. For example, bad actors could set up “secure” wireless channels with previously issued 5G security keys.
Therefore, it’s imperative for 5G operators to address end-to-end cyber security, using an array of novel techniques and mechanisms, which have been defined by 3GPP and (to a much lesser extent) by GSMA.
5G Security Requires 5G SA Core Network:
It’s important to distinguish between 5G NSA network security (which use 4G security mechanisms and 4G core network/EPC) vs. 5G SA network security (which uses 5G core network serviced base architecture and new 5G security mechanisms as defined by 3GPP).
Samsung states in a whitepaper:
▪ With the launch of 5G Stand Alone (SA) networks, 3GPP mitigates some long-standing 4G vulnerabilities to enable much stronger security.
▪ At the same time, the way the Service Based Architecture ‘explodes’ the new 5G Core opens up potentially major new vulnerabilities. This requires a fundamentally new approach to securing the 5G Core, including comprehensive API security.
▪ Operators can communicate 5G SA’s new security features to some business users. Communication to consumers is more challenging because the benefit of new security enhancements will only come into effect incrementally over many years.
▪ Mobile network security cannot depend on 3GPP alone. Operators must apply robust cyber security hygiene and operational best practice throughout their operations.
In addition, the 5G network infrastructure must meet certain critical security requirements, such as the key exchange protocol briefly described below.
There are many other risks and challenges, such as the rising shortage of well-trained cyber security and cyber defense specialists. We will address these in this article. But first, a backgrounder….
5G Core Network Service Based Architecture (SBA):
To understand 5G security specifications, one has to first the 3GPP defined 5G SA/core network architecture.
5G has brought about a paradigm shift in the architecture of mobile networks, from the classical model with point-to-point interfaces between network function to service-based interfaces (SBIs).
The 5G core network (defined by 3GPP) is a Service-Based Architecture (SBA), whereby the control plane functionality and common data repositories of a 5G network are delivered by way of a set of interconnected Network Functions (NFs), each with authorization to access each other’s services.
Network Functions are self-contained, independent and reusable. Each Network Function service exposes its functionality through a Service Based Interface (SBI), which employs a well-defined REST interface using HTTP/2. To mitigate issues around TCP head-of-line (HOL) blocking, the Quick UDP Internet Connections (QUIC) protocol may be used in the future.
Here’s an illustration of 5G core network SBA:
The 5G core network architecture (but not implementation details) is specified by 3GPP in the following Technical Specifications:
TS 23.501 | System architecture for the 5G System (5GS) |
TS 23.502 | Procedures for the 5G System (5GS) |
TS 23.503 | Policy and charging control framework for the 5G System (5GS); Stage 2 |
The 5G network consists of nine network functions (NFs) responsible for registering subscribers, managing sessions and subscriber profiles, storing subscriber data, and connecting user equipment to the Internet using a base station. These technologies create a liability for attackers to carry out man-in-the-middle and DoS attacks against subscribers.
Overview of 3GPP 5G Security Technical Specifications:
The 5G security specification work are done by a 3GPP Working Group named SA3. For the 5G system security mechanisms are specified by SA3 in TS 33.501. You can see all versions of that spec here.
3GPP’s 5G security architecture is designed to integrate 4G equivalent security. In addition, the reassessment of other security threats such as attacks on radio interfaces, signaling plane, user plane, masquerading, privacy, replay, bidding down, man-in-the-middle and inter-operator security issues have also been taken in to account for 5G and will lead to further security enhancements.
Another important 3GPP Security spec is TS 33.51 Security Assurance Specification (SCAS) for the next generation Node B (gNodeB) network product class, which is part of Release 16.
It’s critically important to note that ALL 3GPP security spec features and functions are required to be supported by vendors, but the are ALL OPTIONAL for 5G service providers. That has led to inconsistent implementations of 5G security in deployed and planned 5G networks as per this chart, courtesy of Heavy Reading:
Scott Poretsky, Ericsson’s Head of Security, wrote in an email to Alan:
“The reason for the inconsistent implementation of the 5G security requirements is the language in the 3GPP specs that make it mandatory for vendor support of the security features and optional for the operator to decide to use the feature. The requirements are defined in this manner because some countries did not want these security features implemented by their national telecoms due to these security features also providing privacy. The U.S. was not one of those countries.”
………………………………………………………………………………………………..
Overview of Risks and Potential Threats to 5G Networks:
A few of the threats that 5G networks are likely to be susceptible to might include those passed over from previous generations of mobile networks, such as older and outdated protocols.
-
Interoperability with 2G-4G Networks
For inter-operability with previous versions of software or backward compatibility, 5G must still extend interoperability options with mobile gadgets adhering to the previous generation of cellular standards.
This inter-operability necessity ensures that vulnerabilities detected in the outmoded Diameter Signaling and the SS7 Interworking functions followed by 2G-4G networks can still be a cause of concern for the next-generation 5G network.
-
Issues related to data protection and privacy
There is a likely possibility of a cyber security attack such as Man-in-the-Middle (MITM) attack in a 5G network where a perpetrator can access personal data through the deployment of the International Mobile Subscriber Identity (IMSI)-catchers or cellular rogue base stations masquerading as genuine mobile network operator equipment.
-
Possibility of rerouting of sensitive data
The 5G core network SBA itself could make the 5G network vulnerable to Internet Protocol (IP) attacks such as Distributed Denial of Service (DDoS). Similarly, network hijacking, which involves redirecting confidential data through an intruder’s network, could be another form of attack.
-
Collision of Politics and Technology
Government entities can impact 5G security when it comes to the production of hardware for cellular networks. For instance, various countries have new regulations that ban the use of 5G infrastructure equipment that are procured from Chinese companies (Huawei and ZTE) citing concerns over possible surveillance by the Chinese government.
-
Network Slicing and Cyberattacks
Network slicing is a 5G SA core network function (defined by 3GPP) that can logically separate network resources. The facility empowers a cellular network operator to create multiple independent and logical (virtual) networks on a single shared access. However, despite the benefits, concerns are being raised about security risks in the form of how a perpetrator could compromise a network slice to monopolize resources for compute-intensive activities.
3GPP Public Key based Encryption Schemes:
3GPP has introduced more robust encryption algorithms. It has defined the Subscription Permanent Identifier (SUPI) and the Subscription Concealed Identifier (SUCI).
- A SUPI is a 5G globally unique Subscription Permanent Identifier (SUPI) allocated to each subscriber and defined in 3GPP specification TS 23.501.
- SUCI is a privacy preserving identifier containing the concealed SUPI.
The User Equipment (UE) generates a SUCI using a Elliptic Curve Integrated Encryption Scheme (ECIES)-based protection scheme with the public key of the Home Network that was securely provisioned to the Universal Subscriber Identity Module (USIM) during the USIM registration.
Through the implementation of SUCI, the chance of meta-data exploits that rely on the user’s identity are significantly reduced.
Zero Trust architecture:
As 5G will support a massive number of devices, Zero Trust can help private companies to authenticate and identify all connected devices and keep an eye on all the activities of those devices for any suspected transgression within the network. While it has been successfully tested for private enterprise networks, its capability for a public network like open-sourced 5G remains to be gauged.
Private 5G Networks:
A private 5G network will be a preferred mode for organizational entities that require the highest levels of security taking into account national interests, economic competitiveness, or public safety. A fully private 5G network extends an organization with absolute control over the network hardware as well as software set-up. All of those mechanisms can be proprietary as the 5G private network deployment is only within one company’s facilities (campus, building, factory floor, etc).
Future of 5G Security:
The next-generation 5G-based wireless cellular network has put the spotlight on new opportunities, challenges, and risks, which are mandatorily required as the 5G technology makes great strides.
The 5G security mechanisms will continue to evolve in 3GPP (with Release 17 and above). Many of them will be transposed to become (“rubber stamped”) ETSI standards.
Note that 3GPP has not submitted its 5G core network architecture or 5G security specifications to ITU-T which is responsible for all 5G (IMT 2020) non-radio standards.
Europe’s General Data Protection Regulation (GDPR), applicable as of May 25th, 2018 in all EU member states, harmonizes data privacy laws across Europe. It could serve as a model for network security and data protection initiatives outside the European Union.
Conclusions:
The 5G network has the possibility to enhance network and service security. While 5G comes with many built-in security controls by design, developed to enhance the protection of both individual subscribers and wireless cellular networks, there is a constant need to remain vigilant and a step ahead in terms of technological innovation to thwart possible new cyber-attacks.
An end-to-end security framework across all layers and all domains would be essential. Introducing best practices and policies around security and resilience will remain imperative to future-proof 5G networks.
References:
Strong Growth Forecast for 5G Security Market; Market Differentiator for Carriers
Report Linker: 5G Security Market to experience rapid growth through 2026
AT&T Exec: 5G Private Networks are coming soon + 5G Security Conundrum?
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3169
5G Security Vulnerabilities detailed by Positive Technologies; ITU-T and 3GPP 5G Security specs
Author Bio:
Akash Tripathi is a Content Marketing strategist at Top Mobile Tech. He has 10+ years of experience in blogging and digital marketing. At Top Mobile Tech, he covers various how-to and tips & tricks related to iPhone and more related to technologies. For more about Akash, please refer to:
https://twitter.com/akashtripathi8
https://www.linkedin.com/in/akash-tripathi-42315959/
https://www.facebook.com/akash.tripathi.562
https://www.instagram.com/akashtripathi8/
Is 5G network slicing dead before arrival? Replaced by private 5G?
The telecom industry has been hyping 5G network slicing for several years now, asserting that carriers will be able to make money by selling “slices” of their networks to different enterprises for their exclusive use. Effectively, creating wireless virtual private networks.
Network slicing is a very complicated technology that must work across a 5G SA core, RAN, edge and transport networks. There are no standards for network slicing, which is defined in several 3GPP Technical Specifications.
From 3GPP TS 28.530:
Network slicing is a paradigm where logical networks/partitions are created, with appropriate isolation, resources and optimized topology to serve a purpose or service category (e.g. use case/traffic category, or for MNO internal reasons) or customers (logical system created “on demand”).
- network slice: Defined in 3GPP TS 23.501 v1.4.0
- network slice instance: Defined in 3GPP TS 23.501 V1.4.0
- network slice subnet: a representation of the management aspects of a set of Managed Functions and the required resources (e.g. compute, storage and networking resources).
- network slice subnet instance: an instance of Network Slice Subnet representing the management aspects of a set of Managed Function instances and the used resources (e.g. compute, storage and networking resources).
- Service Level Specification: a set of service level requirements associated with a Service Level Agreement to be satisfied by a network slice instance.
…………………………………………………………………………………………
An IEEE Techblog tutorial on network slicing is here.
………………………………………………………………………………………..
Yet despite all the pomp and circumstance, there are few if any instances of commercially available 5G SA core networks that support network slicing. Perhaps that’s because with the lack of standards there won’t be any interoperability or roaming from one 5G SA core network to another.
Meanwhile, private 5G is coming on strong, especially with Amazon’s announcement which we covered in this post:
Benefits of Private 5G Networks:
A private 5G network, also known as a local or non-public 5G network, is a local area network that provides dedicated bandwidth using 5G technology. Although the telecommunication industry is currently building the needed infrastructure and network gear to support 5G, there has not yet been a widespread rollout.
“5G deployment is still in its infancy, and we use movement from standardization bodies implementing models for Industry 4.0 or smart buildings as an indicator that the 5G private network is a foundational component for their future,” says Jon Abbott, EMEA technology director of Vertiv.
Many companies are working with service providers to use these developing networks, but some prefer the advantages that come with building their own private 5G systems.
A large component in the growth of private 5G networks is the release of an unlicensed spectrum for industry verticals. It gives businesses the option to deploy a private 5G network without having to work with an operator.
Because a private network can be designed for protection and human safety, sensor control, and security, the improved bandwidth is ideal for various use cases in multiple industries.
Benefits of a private network include:
- Reducing the company’s dependence on providers, thereby allowing full control over operating methods
- Separate data processing and storage
- Security policies can be designed and controlled within the organization, allowing companies to customize the network the way they want
- The overall high speeds, low latency, and application support of 5G
Risks of 5G:
Although there are many benefits, faster network do still come with risks. For example, the improved speed and latency can inadvertently create new avenues for cyber-criminals. As more systems go wireless, the more sources cyber criminals can attempt to hack. Furthermore, the growing adoption of 5G is increasing alongside the use of 5G-enabled devices. Because many of these devices are interconnected to various systems through the Internet of Things, the probability of a data leak increases.
Businesses need to take the proper steps to secure their systems in order to ward off cyber criminals as they attempt to take advantage of the fast speeds of 5G. When the implementation of 5G begins, organizations must have security systems, such as firewalls, VPNs, malware software, intrusion detection systems (IDS) and intrusion prevention systems (IPS), in place.
From a Dell’Oro Group report on Private Wireless Networks:
Private Wireless RAN and Core network Configurations:
There is no one-size-fits-all when it comes to private wireless. We are likely looking at hundreds of deployment options available when we consider all the possible RAN, Core, and MEC technology, architectures, business, and spectrum models. At a high level, there are two main private wireless deployment configurations, Shared (between public and private) and Not Shared:
- The shared configuration, also known as Public Network Integrated-NPN (PNI-NPN), shares resources between the private and public networks.
- Not shared, also known as Standalone NPN (SNPN), reflects dedicated on-premises RAN and core resources. No network functions are shared with the Public Land Mobile Network (PLMN).
Not surprisingly, there will be a plethora of deployment options to address the RAN domain. In addition to the shared vs. standalone configuration and LTE vs. 5G NR, private wireless RAN systems can be divided into two high-level RAN configurations: Wide-Area and Local-Area.
Dell’Oro Group continues to believe that it will take some time to realize the full vision with private wireless. Setting aside the more mature public safety market, we expect that some of these more nascent local private opportunities to support both Broadband and Critical IoT will follow Amara’s Law, meaning that there will likely be a disconnect between reality and vision both over the near and the long term.
References:
Microsoft proposes a 5G overlay on their “Azure for Operators” cloud WAN
In a blog post, Microsoft proposes to sell global data transport and routing services to 5G network operators under its new Azure for Operators business. The proposition (described below) is to use a 5G overlay on Microsoft Azure’s cloud WAN.
“Operators spend a lot of money to manage and maintain their networks and peering relationships, but so does Microsoft. The question then is, why are two massive industries doing the same thing? Because both parties move packets around, doesn’t it make more sense for them to collaborate?” wrote Victor Bahl, Microsoft CTO of the company’s new Azure for Operators business, in a blog post to the company’s website. “Here, the well-managed, reliable, and performant Azure network should be thought of as the backbone that operators trust. With this shift in thinking will come all the advantages of innovation that IT companies like Microsoft are rapidly bringing in.”
Azure’s planet-scale WAN
Azure maintains a massive WAN with significant capacity and one that is continuously growing. We have over 175,000 miles of lit fiber optic and undersea cable systems. This connectivity covers close to 200 network points of presence (PoPs) over 60 regions, across 140 countries.
Azure’s network is connected to many thousands of ISPs and other networks with significant peering capacity. Our global network is well-provisioned, with redundant fiber paths that can handle multiple simultaneous failures, it also has massive reserve capacity in unlit dark fiber. These optical fibers are fully owned or leased by Microsoft, and all traffic between and among Azure datacenters within a region or across regions is automatically encrypted at the physical layer.
This combination of redundant capacity to handle failures, dark capacity for significant growth, and research advancements being made in increasing transmission speeds means that we have a massive amount of spare capacity to serve 5G traffic to a broad array of new operators.
Bahl said Microsoft is selling its network services to large, established 5G network operators that already manage their own routing and transport operations, as well as newer telcos that may not have developed such systems. Under Microsoft’s vision, 5G network operators can focus on erecting cell towers and central offices, but can rely on Microsoft’s Internet backbone to carry their customers’ traffic from those locations across the U.S. and the rest of the world.
Making Azure WAN great for 5G traffic
For many years, Microsoft researchers and engineers have been working on a hybrid-global traffic orchestrator for routing network packets across Azure’s WAN. Our orchestrator takes control away from classic Internet protocols and instead moves that control into software that we build and control for 5G traffic. We place the 5G flows that demand high performance on low-latency, high bandwidth paths to and from the Internet. Network flows that are cost-sensitive are instead routed through cheaper paths.
In effect, we have developed a fast-(packet) forwarding mechanism to build a 5G overlay on our existing WAN, thereby supporting a variety of 5G network slices with different wired transport properties, while avoiding interference with the operation of the underlying enterprise cloud network.
We have also extended our state-of-the-art network verification capability to cover complex network topologies by modeling Virtual WAN, Virtual Networks, and other network function virtualizations (NFVs), as well as modeling reachability using formal methods. Using fast solvers, we can verify reachability constraints on customer topologies, at deployment time or when undergoing a config change.
We have applied machine learning to predict the impact of peering link outages and congestion mitigation strategies and use the data to improve the availability of the WAN peering surface area.
Our expertise in optimization algorithms has been shown to ultimately reduce cloud networking spend. Techniques like these will be invaluable in carving out 5G paths on the overlay that are cost-efficient, but still meet the performance needs of every network slice.
o[
The significant upside for operators
To reiterate, Microsoft is heavily invested in running a well-managed, always-available global network. We have been incorporating multiple groundbreaking technologies, including scalable optimization, formal verification of routing policies, machine learning, and AI. We envision operators to not only be able to use our WAN to transfer 5G packets, with low latency, but also to benefit from multiple network services such as DDoS protection, firewalls, traffic accelerators, connection analytics, load balancers, and rate limiters, many of which we use in running existing Azure network workloads.
At Microsoft, we bring the full power of research and engineering leadership into our networks, rapidly incorporating innovation and new features to provide reliable, low-latency, low-cost service. In turn, this effort will open up the significant potential of next-generation services and applications as envisioned by the community at large. It is no understatement to say that collaboration between operators and Azure is key to unleashing the true power of 5G.
Last year Microsoft acquired telecom software vendors Affirmed Networks and Metaswitch Networks, and subsequently introduced its Azure for Operators to “provide operators with the agility they need to rapidly innovate and experiment with new 5G services on a programmable network.” The company earlier this year doubled down on the opportunity with the purchase of AT&T’s Network Cloud operation, a move that positions AT&T to shift its 5G core network operations into Microsoft’s cloud over the next three years.
More broadly, Microsoft is one of a trio of massive cloud computing companies that are hoping to generate sales among telecom companies, including 5G network operators. Google, Amazon Web Services (AWS) and Microsoft are all now selling various products and services into the telecom space.
Several telecom network providers including Canada’s Telus and Deutsche Telekom – are jumping at the prospect of partnering with a cloud computing service provider. Of note is Dish Network’s massive deal with AWS, whereby it plans to run all of its network software in the Amazon cloud and AT&T outsourcing its 5G SA Core network to run on Microsoft Azure cloud.
References:
https://azure.microsoft.com/en-gb/blog/unleashing-the-true-potential-of-5g-with-cloud-networks/
AT&T 5G SA Core Network to run on Microsoft Azure cloud platform