TIP OpenRAN Release 2 Roadmap Published along with Release Schedule
The Telecom Infra Project (TIP) OpenRAN Project Group [1.] has just published its Release 2 Roadmap after conducting a thorough industry review with input from both the supply and the demand sides – including some of the world’s largest network operators. T-Mobile USA, Orange, Bharti Airtel, and Vodafone were authors and contributors.
Note 1. TIP’s OpenRAN Project Group (OpenRAN PG) is focused on scaling up productization of Open RAN technology driven by an ecosystem of technology suppliers, including hardware and software vendors, along with system integrators and service providers. The overarching goal of the OpenRAN PG is to streamline the industry’s efforts on OpenRAN development and to accelerate OpenRAN adoption.
The OpenRAN PG activities include, but are not limited to:
- Gathering and consolidation of prioritized technology requirements for MNOs.
- Identification and engagement with vendors that will deliver the various hardware and software components for OpenRAN solutions that meet harmonized MNO requirements.
- Publishing an OpenRAN Release Definition document mapping the prioritized features to a roadmap of releases.
- Creation of the resulting harmonized OpenRAN Product Requirements documents and definition of Product Test Plans utilized in the Test & Validation framework within TIP.
- Definition of OpenRAN Product Blueprint documents and Blueprint Test Plans utilizing the Test and Validation framework within TIP.
……………………………………………………………………………………………………………………………………………………………………..
The Roadmap document provides a foundational framework for ecosystem alignment – harmonizing the prioritized network operator requirements, including the five European Open RAN MoU signatories, with vendor’s product readiness. You can read the full document here.
Last June, TIP published the ‘Open RAN Technical Priorities Document’ – a comprehensive list of technical requirements that the signatories of the Open RAN MoU Group (Deutsche Telekom, Orange, Telefónica, TIM and Vodafone) considered priorities for Open RAN architecture. Building on that work, the TIP OpenRAN Project Group invited community participants to provide feedback, resulting in over 40 ecosystem responses.
The Roadmap release approach (shown below) enables the execution of the Project Group activities more efficiently, while also providing a path to commercialization via TIP’s Test and Validation framework, delivering on product requirements, blueprint definitions and associated test plans.
TIP Open RAN Roadmap Release Schedule:
The TIP OpenRAN Project Group will continue to advance the requirements gathering and road-mapping process with a regular cadence. As part of the framework, the requirement contribution window will open for MNOs for subsequent minor releases R2.1, R2.2, and so on. The requirements input from MNOs will be harmonized into requirements documents and assessed for compliance and readiness with the technology suppliers.
The TIP OpenRAN Project Group is focused on scaling up productization of OpenRAN technology driven by an ecosystem of technology suppliers, system integrators and service providers. The Project Group aims to streamline the industry’s efforts on OpenRAN development and accelerates OpenRAN adoption.
In addition to publishing the overall roadmap, TIP is also publishing Release 2 roadmaps and Technical Requirements Documents 2.0 for the RU, DU/CU, RIA and ROMA OpenRAN PG subgroups. These will form the basis for issuing ribbons and badges to vendor products – once they have progressed through TIP’s Test and Validation framework – with their subsequent listing on TIP Exchange.
References:
TIP OpenRAN project: New 5G Private Networks and ROMA subgroups
TIP OpenRAN and O-RAN Alliance liaison and collaboration for Open Radio Access Networks
Excerpts of ITU-R preliminary draft new Report: FUTURE TECHNOLOGY TRENDS OF TERRESTRIAL IMT SYSTEMS TOWARDS 2030 AND BEYOND
Cautionary Note:
This ITU-R draft report is not complete or agreed upon at this time. Therefore, all of the text below is subject to change. For sure, AI will play a huge role in future IMT
Introduction:
International Mobile Telecommunications (IMT) systems are mobile broadband systems including both IMT-2000 (3G), IMT-Advanced (true 4G) and IMT-2020 (M.2150 5G RIT/SRIT/RAN previously know as IMT-2020.specs).
IMT-2000 provides access by means of one or more radio links to a wide range of telecommunications services supported by the fixed telecommunications networks (e.g. PSTN/Internet) and other services specific to mobile users. Since the year 2000, IMT-2000 has been continuously enhanced, and Recommendation ITU-R M.1457 providing the detailed radio interface specifications of IMT-2000, has been updated accordingly. Some new features and technologies were introduced to IMT-2000 which enhanced its capabilities.
IMT-Advanced is a mobile system that includes the new capabilities of IMT that go far beyond those of IMT-2000 and also has capabilities for high-quality multimedia applications within a wide range of services and platforms providing a significant improvement in performance and quality of the current services. IMT-Advanced systems can work in low to high mobility conditions and a wide range of data rates in accordance with user and service demands in multiple user environments. Such systems provide access to a wide range of telecommunication services including advanced mobile services, supported by mobile and fixed networks, which are generally packet-based. Recommendations ITU-R M.2012 provides the detailed radio interface specifications of IMT‑Advanced.
ITU-R studied the technology trends for the preparation of development of IMT-Advanced and IMT-2020, and the results were documented in Reports ITU-R M.2038 and ITU-R M.2320, respectively.
Since the approval of Report ITU-R M.2320 in 2014, there have been significant advances in IMT technologies and the deployment of IMT systems. The capabilities of IMT systems are being continuously enhanced in line with user trends and technology developments. [813] IMT-2020 systems include new capabilities of IMT that go beyond those of IMT-2000 and IMT-Advanced and make IMT-2020 more efficient, fast, flexible and reliable when providing diverse services in the intended usage scenarios including enhanced Mobile Broadband, ultra-reliable low-latency communication and massive machine-type communication.
This Report provides information on the technology trends of terrestrial IMT systems considering the time-frame 2023-2030 and beyond. Technologies described in this Report are collections of possible technology enablers which may be applied in the future. This Report does not preclude the adoption of any other technologies that exist or appear in the future, and newly emerging technologies are expected in the future.
Scope:
This Report provides a broad view of future technical aspects of terrestrial IMT systems considering the time frame up to 2030 and beyond, characterized with respect to key attributes and alignment with relevant driving factors. It includes information on technical and operational characteristics of terrestrial IMT systems, including the evolution of IMT through advances in technology and spectrally efficient techniques, and their deployment.
New services and application trends:
The development of IMT systems for 2030 and beyond calls for a thorough reconsideration of several types of interactions [3]. The roles of modularity and complementarity of new technological solutions become increasingly important in the development of increasingly complex systems. The use of data and algorithms, such as AI, will play an important role and technological complementarities are required to ensure that the technology innovations complement each other. This is particularly important as the role of IMT for 2030 and beyond can be seen as a pervasive general-purpose system, instead of simply an enabling technology, resulting in complex technical dependencies.
The role of the users of new services and applications is important in the technology development for IMT for 2030 and beyond, and users will need to have access to the services, required devices, and knowledge to use them, including non-users and potential reasons for their exclusion. Users’ opportunities to actively participate as experientials and developers will increase through a deeper understanding of technologies and skills and allows to shape the technologies for personalized needs.
Key new services and application trends for IMT for 2030 and beyond can be summarized as follows:
– Networks support enabling services that help to steer communities and countries towards reaching the UN SDGs
– Customization of user experience will increase with the help of user-centric resource orchestration models
– Localized demand–supply–consumption models will become prominent at a global level
– Community-driven networks and public–private partnerships (PPP) will bring about new models for future service provisioning
– Networks will have a strong role in various vertical and industrial contexts
– Market entry barriers will be lowered by the decoupling of technology platforms, making it possible for multiple entities to contribute to innovations
– Empowering citizens as knowledge producers, users and developers will contribute to a process of human-centred innovation, contributing to pluralism and increased diversity
– Privacy will be strongly influenced by the increased platform data economy or sharing economy, emergence of intelligent assistants (AI), connected living in smart cities, transhumanism, and digital twins
– Monitoring and steering of circular economy will be possible, helping to create better understanding of sustainable data economy
– Sharing- and circular economy-based co-creation will enable promoting sustainable interaction also with existing resources and processes
– Development of products and technologies that innovate to zero are promoted, for example, zero-waste and zero-emission technologies
– Immersive digital realities will facilitate novel ways of learning, understanding, and memorizing in several fields of science.
The role of IMT for 2030 and beyond will be to connect a number of feasible devices, processes as well as humans to a global information grid in a cognitive fashion, offering new opportunities for various verticals [3]. Considering their different development cycles, a full trolley of the potential advances and vertical transformations will continue to be occur in the beyond 2030 era. The trend towards higher data rates will continue going towards 2030 leading to peak data rates approaching Tbit/s regime indoors, which will require large available bandwidths giving rise to (sub-) THz communications. On the other hand, a large portion of the verticals’ data traffic will be measurement based or actuation related small data which in many cases require extreme low latency in rapid control loops necessitating short over the air latencies to allow time for computation and decision making. At the same time, the reliability requirement in many vertical applications will be stringent. Industrial devices and processes, future haptic applications and multi-stream holographic applications require timing synchronization setting tight requirements for transmission jitter. In the future, there will be use cases that require extreme performance as well as new combinations of requirements that do not fall into the three categories of IMT-2020: eMBB, URLLC, and massive machine type communication (mMTC). Some of these use cases will require wide coverage whereas others are confined in small areas.
The three usage scenarios described in IMT-2020 i.e. eMBB, mMTC and URLLC will still be important and new use cases and applications should be all taken into account for the continuing evolution, especially for those driving the technologies development and reflecting the future requirements.
Services and trend opportunities:
– Holographic Communications
Holographic displays are the next evolution in multimedia experience delivering 3D images from one or multiple sources to one or multiple destinations, providing an immersive 3D experience for the end user. Interactive holographic capability in the network will require a combination of very high data rates and ultra-low latency. The former arises because a hologram consists of multiple 3D images, while the latter is rooted in the fact that parallax is added so that the user can interact with the image, which also changes with the viewer’s position.
Holographic communication provides real-time three-dimensional representation of people, things, and their surroundings into a remote scenario. It requires at least an order of magnitude high transmission rate and powerful 3D display capability.
– Tactile and Haptic Internet Applications
Advanced robotics scenarios in manufacturing need a maximum latency target in a communication link of 100 microseconds (µs), and round-trip reaction times of 1 millisecond (ms). Human operators can monitor the remote machines by VR or holographic-type communications, and are aided by tactile sensors, which could also involve actuation and control via kinaesthetic feedback.
Vehicle-to-vehicle (V2V) or vehicle-to-infrastructure communication (V2I) and coordination, autonomous driving can result in a large reduction of road accidents and traffic jams. Latency in the order of a few ms will likely be needed for collision avoidance and remote driving.
Tele-diagnosis, remote surgery and telerehabilitation are just some of the many potential applications in healthcare. Tele-diagnostic tools, medical expertise/consultation could be available anywhere and anytime regardless of the location of the patient and the medical practitioner. Remote and robotic surgery is an application where a surgeon gets real-time audio-visual feeds of the patient that is being operated upon in a remote location. The technical requirements for haptic internet capability cannot be fully provided by current systems.
– Network and Computing Convergence
Mobile edge compute (MEC) will be deployed as part of 5G networks, yet this architecture will continue towards IMT 2030 networks. When a client requests a low latency service, the network may direct this to the nearest edge computing site. For computation-intensive applications, and due to the need for load balancing, a multiplicity of edge computing sites may be involved, but the computing resources must be utilized in a coordinated manner. Augmented reality/virtual reality (AR/VR) rendering, autonomous driving and holographic type communications are all candidates for edge cloud coordination.
– Extremely High Rate Information Access
Access points in metro stations, shopping malls, and other public places may provide information access kiosks. The data rates for these information access kiosks could be up to 1 Tbps. The kiosks will provide fibre-like speeds. They could also act as the backhaul needs of millimeter-wave (mmWave) small cells. Co-existence with contemporaneous cellular services as well as security seems to be the major issue requiring further attention in this direction.
– Connectivity for Everything
Scenarios include real-time monitoring of buildings, cities, environment, cars and transportation, roads, critical infrastructure, water and power etc. The internet of bio-things through smart wearable devices, intra-body communications achieved via implanted sensors will drive the need of connectivity much beyond mMTC.
It is anticipated that Private networks, applications or vertical-specific networks, mini and micro, enterprises, IoT / sensor networks will increase in numbers in the coming years (based on multiple Radio technologies). Interoperability is one of the most significant challenges in such a Ubiquitous connectivity / compute environment (smart environments), where different products, processes, applications, use cases and organizations are connected. Interactions among telecommunications networks, computers, and other peripheral devices have been of interest since the earliest distributed computing systems.
– XR – Interactive immersive experience
The interactive immersive experience use case will have the ability to seamlessly blend virtual and real-world environments and offer new multi-sensory experiences to users. This use case will enable the users to interact with avatars of other remotely located users and flexibly manipulate objects from representations of real and/or virtual environments with high degree of realism. The implications of this use case are expected to be immense, given its wide-ranging applicability to social, entertainment, gaming, industry, and business sectors.
X-Reality, such as virtual reality (VR), augmented reality (AR), and mixed reality (MR) is expected to provide higher resolution, larger FoV, higher FPS, and lower MTP, which all translate into higher demand on the transmission data rate and end-to-end latency.
A key challenge to address when supporting interactive experiences in network include synchronized transport of multi-modality of flows (e.g., visual media, audio, haptics) to and from different devices in a collaborative group serving the same XR application. Another important consideration is supporting real-time adaptations in the network relative to user movements and actions to ensure the interactions with other users and objects appear highly realistic in terms of placement and responsivity. Enabling spatial interactions will also require fast accessibility and ease of integration of content containing up-to-date and accurate representations of real/virtual environments from different content sources.
– Multidimensional sensing
Sensing based on measuring and analysing wireless signals will open opportunities for high-precision positioning, ultra-high-resolution imaging, mapping and environment reconstruction, gesture and motion recognition, which will demand high sensing resolution, accuracy, and detection rate.
– Digital Twin
Digital twin is a digital replica of entities in physical world, which demands real time and high accuracy sensing to ensure the accuracy, and low latency and high data transmission rate to guarantee the real time interaction between virtual and physical worlds.
A digital twin network is a dynamic replica of the physical network for its full life cycle. It should be capable of generating perceptive and cognitive intelligence based on collection of historical and on-line network data. It should be capable of continuously seeking the optimal state of the physical network in advance, and enforcing management operations accordingly. Digital twin enables network self-boosting, self-evolving, self-optimizing by verifying new functionalities, services and optimization features before deployment. Sensing and learning are the two fundamental functions to fuse the physical and cyber world.
Mixed Reality and Virtual Presence
Enabling efficient Machine Type Communication (MTC) continues to be important driver for IMT for 2030 and beyond. It allows machines and devices to communicate with each other without direct human involvement is a major driver behind the Internet of Things (IoT) and the future digitalization of economies and society [11]. MTC encompasses critical MTC (cMTC) and massive MTC (mMTC). The former targets mission-critical connectivity with stringent requirements on key performance indicators (KPI) such as reliability, latency, dependability, and synchronization accuracy. On the other hand, the latter addresses connectivity needs for massive number of potentially low-rate, low-energy simple devices, where the connection density and the energy efficiency are the most important KPIs.
For 2030 and beyond, data markets will become increasingly important technology area connecting data suppliers and customers [11]. The data generated by the widely distributed MTDs will have enormous business and societal value. The value-added services of data marketplaces will be empowered by emerging technologies like artificial intelligence (AI) and distributed ledger technology (DLT), while adding new data-centric KPIs such as the age of information, privacy and localization accuracy.
Proliferation of intelligence
Real-time distributed learning, joint inferring among proliferation of intelligent devices, and collaboration between intelligent robots demand a re-thinking of the communication system and networks design.
– Global Seamless Coverage
In order to connect the unconnected and provide continuously high quality mobile broadband service in various areas, it is expected that the interconnection of terrestrial and non-terrestrial networks will facilitate the provision of such services.
Technology Drivers for future technology trends towards 2030 and beyond:
The continuing evolution of the IMT systems, and the underlying technologies, must be guided by the imperative to satisfy fundamental needs, and contextualized in terms of how they can help the society, the end users, and the value creation and delivery. These necessities and key driving factors are:
– Societal goals – Future technologies should help contribute further to the success of a number of UN SDG goals including environmental sustainability, trust and inclusion, efficient delivery of health care, reduction in poverty and inequality, improvements in public safety and privacy, support for ageing populations, and managing expanding urbanization.
– Market expectations – New technologies should enable significant and novel capabilities, supporting radically new and differentiated services, opening up greater market opportunities
– Operational necessities – The need to manage complexity, drive efficiency, and reduce costs, with end to end automation and visibility, is also an imperative as a motivation and driving factor
Key considerations for IMT Systems for 2030 and beyond include:
– Sustainability/Energy efficiency
Energy efficiency has long been one important design target for both network and terminal. While improving the energy efficiency, the total energy consumption should also be kept as low as possible for the sustainable development.
Energy efficiency has long been one important design target for both network and terminal. While improving the energy efficiency, the total energy consumption should also be kept as low as possible for the sustainable development. Power efficient technology solutions are needed both in backhaul and local access to make use of small-scale renewable energy sources.
– Peak Data Rate/Guaranteed Data Rate
The peak data rate for future system should be largely increased in order to support extremely high bandwidth services such as extremely immersive XR and holographic communication.
Guaranteed data rate usually refers to the achievable data rate at the edge of coverage area. Future system should guarantee users’ experience regardless of users’ location and network traffic conditions.
– Latency
Services with real-time and precise control usually have high demands on the low latency of communications, such as the air interface delay, end-to-end latency, and roundtrip latency.
– Jitter
Usually refers to the degree of latency variation. Some of the future services such as time sensitive industry automation applications may request the jitter close to zero.
– Sensing resolution and accuracy
Sensing based services, including traditional positioning and new functions such as imaging and mapping, will be widely integrated with future smart services, including indoor and outdoor scenarios. Very high accuracy and resolution will be needed to support a better service experience.
– Connection density
Refers to the number of connected or accessible devices per unit space. It is an important indicator to measure the ability of mobile networks to support large-scale terminal devices. With the popularity of the Internet of Things (IoT) and the diversification of terminal accesses in the specific applications, such as industrial automation and personal health care etc., mobile system needs to have the ability to support ultra-large connections.
– Coverage and full connectivity
The future network should be able to provide global coverage and full connectivity by wireless and wired, terrestrial and non-terrestrial coverage with heterogeneous multi-layer architecture. The full connectivity network should support intelligent scheduling of connectivity according to application requirements and network status to improve the resource efficiency and service experience. It will extend the provision of quality guaranteed services, such as MBB, massive IoT, high precision navigation services etc, from outdoor to outdoor from urban to rural areas and from terrestrial to non-terrestrial spaces.
– Mobility
Refers to the maximum speed supported under a specific Quality of Service (QoS) requirement. Future system will not only support terminals on land including high speed train, but it will also provide services to terminals in high-speed airplane, drone and so on.
– Spectrum utilization
With new services and applications towards 2030 and beyond, more spectrum is required to accommodate the explosive mobile data traffic growth. Further study will be introduced on novel usage of low and mid band, and the extension to much higher frequency band with much broader channel bandwidth. The smart utilization of multiple bands and improvement of spectrum efficiency through advanced technologies are essential to achieve high throughput in limited bandwidth.
– Simplified user-centric network
With huge amounts of new services and scenarios towards 2030 and beyond, the network is required to satisfy diversified demand and personalized performance. The soft network should be designed as a fully service-based and native cloud-based radio access network, which can guarantee the QoS and provide consistent user experience. The lite network should be constructed as a globally unified access network with the simple architecture and the powerful capabilities of robust signalling control, accurate network services and efficient transmission through the converged communication protocols and access technologies with plug-and-play, on-demand deployment. A user-centric network is required to enable a fully distributed/decentralized network mitigating single point of failure as well as to enable the user-controlled data ownership which is critical to the next generation network.
– Native AI
The future mobile system will have stronger capabilities and support more diversified services, which will inevitably increase the complexity of the network. Artificial Intelligence (AI) reasoning will be embedded everywhere in the future network including physical layer design, radio resource management, network security, and application enhancement, as well as network architecture, which results in a multi-layer deep integrated intelligent network design. Meanwhile the future network can also support distributed AI as a service for larger scale intelligence.
– Security/Trustworthiness
The future network supports more advanced system resilience for reliable operation and service provision, security to provide confidentiality, integrity and availability, privacy with self-sovereign data, and safety regarding the impact to the human being and environment etc.
The roles of trust, security and privacy are somewhat interconnected, but different facets of the future networks. Inherited and novel security threats in future networks need to be addressed. Diversity and volume of novel IoT and other networked devices and their control systems will continue to pose significant security and privacy risks and additional threat vectors as we move from IMT-2020 to beyond. IMT for 2030 and beyond needs to support embedded end-to-end trust such that the resulting level of information security in the networks to is significantly better than in state-of-the art networks. Trust modelling, trust policies and trust mechanisms need to be defined.
Security algorithms can use machine learning to identify attacks and respond to them. Continuous deep learning is needed on a packet/byte level and applying machine learning to enforce policies, detect, contain, mitigate, and prevent threats or active attacks. While IMT-2020 is still largely device / network specific, future networks envisage far more immersive engagement with the network.
Conventional trust, security and privacy solutions may not be directly applicable to specific machine type communication scenarios owing to their lack of humans in the loop, massive deployment, diverse requirements, and wide range of deployment scenarios. This motivates the design of resource-efficient unsupervised solutions to be exploited by MTD, e.g., based on distributed ledger technology (DLT).
– Dynamically controllable radio environment
To be able to dynamically change the characteristics of radio propagation environment and create favourable channel conditions to support higher data rate communication and improve the coverage.
Emerging Technology trends and enablers:
Technologies to use AI in communications:
The big success of artificial intelligence (AI) in image, video and audio signal processing, data mining and knowledge discovery, etc., has made it possible to shift wireless communication to an intelligent paradigm in a similar manner, i.e., learning from the wireless big data which has yet to be fully exploited to design new and efficient architectures, protocols, schemes and algorithms for the future communication system. In turn, with the wide deployment of base stations, edge servers and intelligent devices, the mobile network will provide a new and powerful platform for ubiquitous data collection, storage, exchange and computing which are needed for future mobile / distributed / collaborative machine learning. For the future communication system, an emerging and transformative move will be providing the access of AI to everyone, every business, every service anywhere anytime. AI is the design tablet of the future communication system, and it will be the cornerstone to create intelligence everywhere. One of the main differences of the future communication system compared to IMT-2020 is that it will use mobile technologies to enable the proliferation of AI and use the radio networks to augment ubiquitous, distributed machine learning. Furthermore, AI ethics issues, existing in all AI-based systems and applications, have been raised and discussed in wireless community from different aspects. Then, future IMT technology would request on fairness, robustness to avoid AI ethics issues in certain level.
AI native new air interface:
Applying tools from Artificial Intelligence (AI), and Machine Learning (ML) and its sub-set Deep Learning (DL), in wireless communications have gained a lot of traction in recent years. This trend in large part has been motivated by the significant increase in the system complexity in the IMT-2020 radio access network (RAN) and its evolution over previous wireless technology generations. Deep neural networks allow the characterization of specific or even unknown channel environment and network environment, i.e., the traffic, the interferences and user behaviours, and then adapt the radio signalling to the channel and network environment. With learning it can optimize user signalling, power consumption as well as its end-to-end connectivity, and smartly coordinate the multi-user access of radio resources, thus optimizing the data and control plane signalling and improving the overall system performances.
The most challenging issue in air interface design is to sense the communication environments, i.e. the estimation and prediction of propagation channels. To this end, traditional air interface pays much effort to pilot design and channel estimation. Now with machine learning and especially the capability of black-box modelling and hyper-parameterization of a deep neural network, the unknowns of the underlying channel could be properly learned providing that sufficient data is available. Thus, we can reconstruct a physical channel rather than just estimate it. With transfer learning, the learned model can be transferred to adjacent nodes. This gives new way to air interface design. Several components in the transceiver chain are expected to be implemented through AI/ML based algorithms. This includes the transmitter side – beamforming and management and the receiver side – channel estimation, symbol detection and/or decoding at a minimum. Therefore, there will be a heavy focus to redesign the physical layer of the communication protocol stack using AI. On the other hand, the implementation issues related to periodic updating of deep learning models that are used in various blocks of the physical layer must be addressed.
In addition, radio resource management or resource allocation can also be implemented via AI/ML based methods. In a multi-user environment, with reinforcement learning, base stations and user equipment could automatically coordinate the channel access and resource allocation based on the signals they respectively received. Each of the nodes calculates its reward for each transmission, and adjusts its power, beam direction and other signalling to accomplish the distributed interference coordination and improve the system capacity. Following are some potential usages:
– For QoE bottleneck of last mile radio link. It is expected for RAN AI to expose radio channel prediction capabilities for upper layer adaptation, for example, available bandwidth and predicted latency, by taking into account multi-users radio channel fluctuation, traffic pattern and cell load variation and etc. This interaction could be based on the subscribed request from upper layer and would be only triggered when the predefined threshold is satisfied.
– The optimization of radio resource allocation to meet the requirements of highly demanding applications such as the cloud based interactive applications which requires low latency and high throughput. The optimization will take into account multi-dimensional metrics, for example, application-level traffic pattern, i.e., video frame level I/B/P frames distribution, transport layer congestion control, low layer buffer status, QoS profiles (e.g. bandwidth, latency)
– For the randomness and uncertainty of traffic distribution in the vehicle network, use the deep reinforcement learning based adaptive exploration approach for the resource allocation, including offline training, online distributed learning method etc.
Machine learning techniques can be used for symbol detection and/or decoding. While de-modulation/decoding in the presence of Gaussian noise or interference by classical means has been studied for many decades, and optimal solutions are available in many cases, ML could be useful in scenarios where either the interference/noise situation does not conform to the assumptions of the optimal theory, or where the optimal solutions are too complex. Meanwhile, IMT for 2030 and beyond will likely utilize even shorter codewords than IMT-2020 with low-resolution hardware (which inherently introduce non-linearity that is difficult to handle with classical methods). ML could play a major role, from symbol detection, to precoding, to beam selection, and antenna selection.
Another promising area for ML is the estimation and prediction of propagation channels. Previous generations, including IMT-2020, have mostly exploited CSI at the receiver, while CSI at the transmitter was mostly based on roughly quantized feedback of received signal quality and/or beam directions. In systems with even larger number of antenna elements, wider bandwidths, and higher degree of time variations, the performance loss of these techniques is non negligible. ML may be a promising approach to overcome such limitations.
MAC layer is a major application area of AI where many of the problems that have legacy solutions can be replaced with AI based methods using supervised learning, data collection and ML model deployment options. Next generation MAC algorithms will need to consider the AI that is used in various layers of the network, especially in physical layer. This is needed because of the need to update the deployed machine learning models, collect data for supervised learning tasks and enable reinforcement learning on different blocks of the network.
AI techniques can be used to target one or more wireless domains, including non-real-time (non-RT) network orchestration and management, such as configuration of antenna parameters and near-real-time (near-RT) network operation, such as load balancing and mobility robustness optimization. Each wireless domain involves different sets of physical and virtual components, family of parameters including key-performance-indicators (KPIs), underlying complexities, and time constraints for updates. Hence, there is a need to consider tailored AI solutions for different classes of the RAN, and their associated problems. There already exists a rich body of research and practical demonstrations of the potential benefits of AI for Wireless, including significant network energy savings.
With the progresses of machine learning and information theory, the ultimate air interface can hopefully perform the automatic semantic communications. There are many open fundamental problems in this direction for the wireless community. For example, learning algorithms usually relies highly on the wireless data which may be hard to obtain or be preserved under privacy constraints. To solve it, we can learn with both the practical wireless data and the statistical models.
Questions related to the most optimal ML algorithms given certain conditions, required amount of training data, transferability of parameters to different environments, and improvement of explainability will be the major topics of research in the foreseeable future. There will be various phases towards development of AI for Wireless, and it is imperative to ensure the increased integration of the technology comes with minimum disruption to the rollout and operation of wireless systems and services. In the short and medium terms, AI models may be targeted for optimisation of specific features within RAN for IMT-2020 and its evolution, such as network operation and management functionalities. In the longer term, AI may be used to enable new features over legacy wireless systems.
AI-Native radio network
Future IMT-systems are required to support extremely reliable and performance-guaranteed services. They will introduce a multi-dimensional network topology, which will make network management and operation more difficult and introduce more challenging problems. To address these problems, it will adopt AI technologies for automated and intelligent networking services. Consequently, to assist computation intensive tasks in AI applications, it will evolve into an AI-native network architecture.
The highest level of AI-native radio network should be designed and implemented by AI to be an intelligent radio network, which can automatically optimize and adjust the network according to specific requirements/objectives/commands, or changes of the environment. The research may include the high-layer protocols, network architecture and networking technologies enabling the above intelligent radio network.
RAN optimization is one of the problems that is rather difficult to solve due to the complexity of the mathematical formulation of the problems. Deep reinforcement learning paradigm in AI can enable zero-touch optimization of the RAN elements with minimum hand-crafted engineering. In addition, Radio networks architecture design is often a challenging task that can be automated with the use of AI. Methods such as graph representation learning could be utilized to enable the network architecture design that can simplify the problem.
Various use cases of AI-empowered network automation are proposed, including fault recovery/root cause analysis, AI-based energy optimization, optimal scheduling, and network planning. Key challenges of training issues have been identified: lack of bounding performance, lack of explainability, uncertainty in generalization, and lack of interoperability to realize full network automation. Four types of analytics can be classified for future AI-native networks, and they are: descriptive analytics, diagnostic analytics, predictive analytics, and prescriptive analytics. The key for successful network automation in AI-native network architecture is how to collect rich and reliable network data that is not typically open to other players other than network operators.
In general, an overall network architecture consists of four tiers of entities: UE, BS, core network, and application server. Application of AI can be categorized into three levels as shown in Figure 1: 1) local AI, 2) joint AI, and 3) E2E AI. This use case family consists in being present and interacting anytime, anywhere, using all senses if so desired. It enables humans to interact with each other without any limitation on physical presence.
The future RAN will be able to perceive and adapt to complex and dynamic environments by monitoring and tracking conditions in the radio network while diagnosing and restoring any RAN issues in an automated fashion. To achieve autonomy for its full life cycle management, at least the following novel networking technologies need to be considered: 1) efficient and intelligent network telemetry technologies that leverage AI to apply management operations based on a collection of historical and live network data, 2) automated network management and orchestration technologies that continuously seek the optimal state of the RAN and enforce management operations accordingly, 3) automatically perform life cycle management operations, adjust configurations on radio network elements, and optimize new services and features during and after deployment, and 4) provide AI based assistance, in particular for aspects such as forecasting, root cause analysis, anomaly detection and intent translation.
More specifically, large quantity of data transportation will bring burdens to each network interface. Besides, data sensed from the radio environment sometimes don’t have the corresponding labels. Intelligent data perception, e.g., utilizing GAN to generate the required data so as to simulate real data, will avoid transferring large amount of data over interfaces, and protect the data privacy to a certain degree. To further this vision of zero-touch network management, an open network data set and open eco-system need to be established.
It is also possible that user feedback is introduced into the decision-making process of the network to improve the decision-making of AI algorithms and help the machine better understand user preferences and make more user-preferred decisions.
In future IMT-systems, more computation nodes will be required to support highly computation-intensive services. Thus, computation nodes will be pervasive from core to edge and from network to device. To cope with this trend, the control and user planes of the network for future IMT-systems need to be redesigned, and emerging technologies such as programmable switches and distributed/federated learning need to be aggressively adopted.
To support services in multiple application scenarios, an intelligent network is needed. In the AI-Native Radio Network, AI is no longer just optimizing the wireless resources of the wireless network, but an intelligent system integrating with radio network, which can realize the supply of on-demand capability.
In order to realize the intelligence of Radio Network, the new functions of Sensing and AI need to be supported. Through the data sensing function, we can realize the end-to-end collection, processing and storage of network data. While the AI function can call and subscribe to these data on demand, and provide capability support according to different application scenarios. In this way, the utilization and support of AI capabilities can be realized more efficiently and globally.
AI system in AI-Native Radio Network is distributed on different network functions. AI algorithms running on different functions or AI models trained on different functions are all components of this distributed AI system, and all components are organic unity. Under the control or coordination of the unified AI control center, each component of the distributed AI system independently completes the assigned tasks, interacts with other components, and reports measurements to the control center. Distributed AI system should be end-to-end solution.
Edge AI is to be considered one of the key enablers for future IMT-systems, especially for sensing-communication-computing-control. On the other hand, a distributed deep learning architecture is to be considered for realizing URLLC in future IMT-systems. Thus, its RAN can be flexibly and adaptively optimized with the aid of AI to guarantee QoS and leading to the topics of interest: 1) adaptive RAN slicing architecture and the corresponding distributed intelligence architecture, 2) knowledge-assisted learning architecture and methods, and 3) fast training/federated learning methods.
In addition, Self-Synthesising Networks automate the actual design process, or large parts thereof. Whilst the actual invention of engineering principles may still be done by human researchers or in combination with AI, the system design, prototyping and standards development are now largely executed by machines. Given that the two phases of systems design and standardisation take years, it is hoped that the introduction of self-synthesising networking principles will accelerate feature development in telecoms by 5-8 years.
Radio network for AI:
The radio network will be migrated from over the top towards the AI era. Wireless networks should consider the AI applications and paradigms that require exchange of large amounts of data, machine learning models, and inference data exchange between different entities in the networks. We must find long-term platform technologies to better support AI service, which will greatly impact the design of future radio network, i.e. radio network for AI, The distributed and collaborative machine learning is required to fully leverage the computing/communication load and the efficiency and furthermore to comply with the local governance of data requirement and data privacy. Therefore, the data-split and model‑split approaches will be the major focuses for future research. The impacts of this on the future network design are threefold:
– Shift from downlink-centric radio to uplink-centric radio: Unlike existing downlink-centric radio which usually supports heavier traffic and better QoS for downlinks, AI requires more frequent model and data exchanges between a base station and the different users it serves. The uplinks should be reconsidered in network design to attain a balanced, efficient and robust distributed machine learning.
– Shift from the core network to the deep edge: The locality of data and the computing/communication needed for deep machine learning bring big challenges to the end-to-end delay. To mitigate it, new network as well as the corresponding protocols should be redesigned. One of such research directions is to place the major learning processes and threads close to the edge and thus forms a deep edge which can greatly mitigate the system delay.
– Shift from cloudification to machine learning: Due to the distributive nature of data and computing power, the communication and computing procedures of a machine learning algorithm often take place across the whole network from the cloud to the edge and the devices. Therefore, traditional cloudification should also be reconsidered to be application-centric, i.e., to meet the specific needs of the more general distributed machine learning applications with proper deployment of computing and communication resources.
In addition, Future data-intensive, real-time applications require distributed ML/AI solutions deployed on the edge-cloud continuum, shortly known as EdgeAI or Edge Intelligence. These solutions support augmenting human-decision processes, developing autonomous systems from small devices to complete factories, and optimising the network performance and marshalling the billions of IoT devices expected to be interacting in the 2030s. Distributed ML/AI has become an inseparable part of wireless networks and increasing volumes of heterogeneous streaming data will require more advanced computing paradigms. Since heterogeneous IoT devices are not as reliable as high-performance, centralised servers, distributed and self-organising schemes are mandatory to provide strong robustness in device and link failures. The current open questions in fulfilling the requirements of the true Edge Intelligence include data and resource distribution, distributed and online model training, and inference on those models across multiple heterogeneous devices, locations, and domains of varying context-awareness. The future network architecture is expected to provide native support for radio-based sensing and, through versatile connectivity, accommodate ultra-dense sensor and actuator networks, enabling hyper-local and real-time sensing, communication, and interaction the intelligent edge-cloud continuum.
Explainable AI for RAN:
Automation principles were introduced into the telecommunications architecture as early as in 2008. Despite a swath of algorithmic ML/AI/SON frameworks available, uptake was not as widespread as expected. An important reason for this was that –whilst the developed automation frameworks outperformed any other operational approach– it exhibited occasional and unexplainable outages which operators could not accept. Since the proposal of the concept of wireless AI, there has been a widespread concern on how to harmonize the relationship between existing communication mechanism and the so-called “black-box” AI (machine learning, or even deep learning) models. It has been highly encouraged that existing expert wireless knowledge should be fused in the design of AI models to improve their performance and interpretability, for example, AI based MIMO channel estimation achieving the significant performance gain.
In the context of telecoms, explainable AI (XAI) enables the creation of Trusted Networks which are trusted both by consumers and operators. Individual building blocks in the network are still embodied through machine learning (eg regression) or deep learning (e.g., CNNs, RNNs or GANs), but the overall interaction between these automated components is supervised through XAI. It is typically enabled through a fairly deterministic but “human-influenceable” decision tree which trades the levels of trust with performance through planning optimization approaches. Given the high-level of automation at the radio interface, RAN, Core and Transport networks, XAI will play an instrumental role in 5G and 6G to ensure an end-to-end trusted operation of the networks.
Furthermore, it should be pointed out that the solutions for integrating existing communication mechanism and AI models should go beyond simple “one plus one” splices, for example, AI-based channel state information (CSI) feedback improving the CSI reconstruction accuracy. It could be anticipated that the exploration of expert knowledge will be one of the determinant factors in wireless AI model designs. Even more, we can envision that the ultimate goal of wireless AI will be to develop a kind of models specifically designed based on the distinguishing characteristics of data from wireless networks, just like those models in computer vision and natural language processing.
Technologies for integrated sensing and communication:
Wireless sensing including object detection, ranging, positioning, tracking, as well as imaging, etc, has long been a separated technology developed in parallel with the mobile communication systems. Positioning is the only sensing service that mobile communication systems up to IMT-2020 could offer. Departing from the traditional approach of designing wireless networks solely for communication purposes, IMT for 2030 and beyond will consider an integrated sensing and communication (ISAC) system from its outset. In the future communication system, enabled by the potential use of very high frequency bands (e.g. from mmWave, THz, up to visible light), wider bandwidth, denser deployment of large antenna arrays, reconfigurable intelligent surface(RIS), artificial intelligence(AI) and collaboration between communication nodes/devices, sensing will become a new function integrated with the communication system to enable new services and solutions with higher degree of accuracy in aspects such as ranging, doppler, and angular estimation, as well as positioning.
In the ISAC system, sensing and communication function will mutually benefit within the integrated system. On one hand, the communications system can assist sensing service. It can explore the radio wave transmission, reflection, and scattering to sense and better understand the physical world, also known as “Network as a sensor”. On the other hand, sensing results can be used to assist communication in access or management such as more accurate beamforming, better interference management, faster beam failure recovery, and less overhead to track the channel state information, improving quality-of-service and efficiency of the communication system. This is known as “sensing assisted communication”. Moreover, as a foundational feature for 6G, sensing can be seen as a “new channel” linking the physical world to the digital world. Real-time sensing combined with AI technologies is thus essential to realize the concept of digital twin.
In general, the interaction level between communication and sensing systems can be classified as (a) co-existence, where sensing and communication operate on physically separated hardware, use the same or different spectrum resources and do not share any information, treating each other as interference,(b) cooperation, where the two systems operate on physically separated hardware While information can be shared to each other(e.g. prior knowledge of sensing/communication could be shared to reduce inter-system interference or in some case enhance the other system), and (c) integrated design, where the two systems are designed to behave as a single system with information sharing and joint design in spectrum usage, hardware, wireless resource management, air interface, and signal transmission and processing, etc . The focus of ISAC in future IMT is on (c).
In the integrated design, the technology development of the ISAC can be divided into different stages which can range from loosely coupled to fully integrated. As a starting point, communication and sensing system share the resources such as spectrum, hardware. Communication and sensing can be implemented as one system serving two traffic forms simultaneously. The key research issues in this stage could be efficient scheduling and coordination algorithms between sensing and communication modules to minimize the interference to each other. As a step further, communication and sensing will work together to improve the performance for one single system. The integration of signal processing, such as the time, frequency and spatial domain processing techniques can be jointly designed to serve both sensing and communication. Potential directions in this stage would be air interface design based on joint waveform, unified beamforming scheme, etc., which is essential to improve the efficiency of the ISAC system. Towards the mature stage of the ISAC, communications and sensing will be completely coordinated and collaborated in all possible dimensions including spectrum, hardware, signalling, protocol, networking, etc., achieving mutual promotion and benefits. Further combined with technologies such as AI, network cooperation and multi-nodes cooperative sensing, the ISAC system will have benefits in enhanced mutual performance, overall cost, size and power consumption of the whole system.
The ISAC capabilities enable many new services which the mobile operators can offer, including but not limited to very high accuracy positioning, tracking, imaging (e.g. for biomedical and security applications), simultaneous localization and mapping, pollution or natural disaster monitoring, gesture and activity recognition, flaw and materials detection. These capabilities will in turn enable application scenarios in future consumer and vertical applications in all kinds of business such as context-aware immersive human-centric communications, industrial automation (Industry 4.0), connected automated vehicles and transportation, energy, healthcare/e-health and so on.
The technology enablers include transceivers building on new RF spectrum at the high-frequency range, the RIS that allows mobile operators to shape and control the electromagnetic response of the environment, and advanced beam-space processing to track users and objects, passive tag (e.g. RFID tag) aided sensing to improve object identification accuracy and efficiency. Equally important, ML/AI algorithms will exploit large datasets to provide new sensing services and improve the communication. And yet communication and sensing services need to share available hardware and waveforms, while fusing information from distinct sources of measurements in the network deployment area. Research challenges remain in areas such as system level design and evaluation methodologies to characterize the fundamental trade-offs of the two functions in the integrated system, the solutions to deal with the increased sensitivity to hardware imperfections, joint waveform design and optimization, etc.
Technologies to support convergence of communication and computing architecture:
From emerging IMT towards 2030 and beyond use cases such as digital twin, cyber-physical systems, mixed reality, industrial/service robots, a number of technology trends can be observed. One trend is towards processing data at the network edge close to data source for real-time response, low data transport cost, energy efficiency, and privacy protection. There, edge computing is a distinguished form of cloud computing that moves part of the service-specific processing and data storage from the central cloud to edge network nodes that are physically and logically close to the data providers and end users. Among the expected benefits of edge-computing deployment in current networks are performance improvements, traffic optimization, and new ultra-low latency services. Edge intelligence in IMT for 2030 and beyond will significantly contribute to all these aspects. Pervasive compute with seamless task mobility can be enabled by evolved container formats based on portable codes and associated system interfaces. This will allow the platform to dynamically schedule workloads on nodes regardless of varying hardware and system software setups. As a result, several optimizations can be performed with limited overhead, such as moving computations close to a data source or consumer. This can be useful for having computational tasks follow mobile users, opportunistically offloading workloads from the device to preserve device energy and moving computations for an optimized cost/performance/power trade-off.
Another trend is towards scaling out device computing capability beyond its physical limitations for advanced application computing workloads. Future applications, such as truly immersive XR, mobile holograms and digital replica require extensive computation capabilities to deliver real-time immersive user experience. However, it would be challenging to meet such computational requirements solely with mobile devices. In order to overcome the limits of the computing power of mobile devices, split computing makes use of reachable computing resources over the network. These computing resources could be available on various entities of networks, e.g., mobile devices, BSs, MEC servers and cloud servers. With split computing, mobile devices can effectively achieve higher performance even as they extend their battery life, as devices offload heavy computation tasks to computation resources available in the network. Additionally, a third trend is that the ubiquity of AI needs ubiquitous computing and data resources.
These new technology trends bring in new technology challenges on scalability, dynamic workload distribution, data collection/management/sharing. One challenge is scalability. In today’s cloud computing, computing resource are often centralized in a few national or regional data centers. Centralized service discovery and orchestration mechanisms used are given full visibility on computing resources and services in data centers. When computing resources and services become more widely distributed, the centralized approach is no longer scalable; a more scalable approach is needed for widely distributed computing resources.
Another challenge is dynamic computing workload distribution. Today’s workload distribution between devices and the cloud is based on client-server model with a fixed workload partition between the client and the cloud. The fixed workload partition is application specific and is pre-determined in the application development phase and assumes that there are always sufficient computing resources in the cloud to fulfil the server-side workload. As computing resources become distributed, there needs to be a scheme that allows dynamic device computing scaling out based on conditions such as workload requirements, communication and computing resource availability, etc. To minimize the impact on applications, dynamic computing scaling scheme should be enabled as an IMT system capability with minimal dependency on applications.
A third challenge is data collection, synchronization, processing, management and sharing – With the widespread application of AI in society/industry, a systematic approach in collecting, processing, management and sharing data to facilitate AI/Machine Learning becomes very important. Split computing also requires synchronization of a large amount of data, context, and the program itself among network entities. The conventional data management functions in cellular networks focus on managing subscription information and policies. In IMT-2020, a network data analytics function (NWDAF) was added into the specifications through which network functions’ measurement data can be collected and used for analytics. Future IMT towards 2030 and beyond are anticipated to have further diversification on data sources, types and consumptions. Therefore, it is expected that data plane functions will be part of the IMT system function from the beginning and can support full-blown data services to devices, network functions and applications. Finally, fourth challenge is low power and low latency wireless communication. To support extreme services on a lightweight device such as AR glasses, the device needs low latency wireless communication with low device power consumption.
To address the above-mentioned challenges, computing services and data services are expected to become an integral component of the future IMT system. Pervasive/ubiquitous computing and data services can be enabled alongside the ubiquitous connectivity as integral services of the IMT system. Dynamic computing workload distribution can be inherently supported as an IMT system capability. Applications can use the IMT system’s workload distribution and scaling capability to achieve optimized performance. Data plane services in the IMT system such as data collection, processing, management and sharing can be enabled to support AI needs in air interface, cellular network and applications.
Technologies for integrated access and superlink communications:
Sidelink communications:
Short-range device-to-device (D2D) wireless communication with extremely high throughput ultra accuracy positioning and low latency will be a very import communication paradigm for the future communication system. On the one hand, lots of new applications, such as ultimate immersive cloud XR, holographic display, tactile internet and remote motion control, integrated aerial and vehicle communication, and sidelink enhanced industry internet things (SL-IIoT), which need either Tbps throughput or sub-ms level latency and low power consumption wireless link, will mature in the next decade and the wireless communication distance for these D2D applications are comparatively short. On the other hand, to satisfy the above wireless requirement, extremely wide bandwidth technologies with short propagation distance, such as THz technology, optical wireless technology, ultra accuracy sidelink positioning technology, and enhance terminal power reduction technology, may be potential candidates. Therefore, how to integrate these short range D2D applications and its related sidelink technologies into cellular system need to be considered in the future communication system.
The above sidelink by nature may significantly increase the system capacity. THz and optical wireless link normally have very narrow beam and short transmission distance. Therefore, the spectrum or channel can be easily reused by other sidelinks, which can increase the system capacity. Meanwhile, a dynamical self-organized short-range network, such as mesh network, may also solve the bottleneck of previous cellular system in which all the resources on the Uu interface were managed centrally by base station. However, the D2D or multi-hop short range mesh network may have the risk of slow convergence time and large signalling overhead due to frequent movement of nodes. Therefore, the integrated design of short range and cellular may help the sidelink to achieve optimized system level performance. How to increase the integration efficiency, as well as how it may co-exist with other systems on the same spectrum deserve further research.
Radio on THz:
In the subjected technology, a UE is connected to its peripheral devices by using terahertz broadband radio, while the peripheral devices receive/transmit data signal in THz band radio with UE and also receive/transmit data signal in the different (lower) frequencies connecting to BSs (operated in, e.g., the millimeter wave bands and the sub-6 gigahertz band) and then connect to the APs located in BS. Here the peripheral devices play a role to mediate between a UE and BS with AP.
Generally, the terahertz radio has been investigated for use in fixed and long-range radio applications such as wireless backhaul. However, it is expected that the terahertz radio application could also be disseminated in the form of these short-range use cases.
In the IMT for 2030 and beyond networks, UEs themselves will also need to evolve to meet individual users’ high-communications performance demands. For example, while UEs have gradually evolved in terms of weight and shape, their capabilities as radio devices have not significantly changed since mobile phones first appeared 40 years ago.
In achieving the exchange of information with the quality and quantity high enough to meet individual users’ diverse demands, UEs present significant limitations in terms of their size, which limits the number of integrated antennae and their maximum transmission power. It is not practical to increase the size of UEs to alleviate constraints such as the number of antennae, and the performance of uplink communication from UEs to BSs is vastly inferior to downlink communications from BSs.
Therefore, we introduce the cooperation technique between various peripheral devices that communicate with UEs. Specifically, through the cooperation, it would be possible to solve issues arising from the constraints caused by a single user device, such as power transmission and the number of integrated antennae.
For examples, peripheral devices around UEs, such as PCs, watches, glasses (smart glasses), or self-driving cars, can become wireless devices and cooperate with one another, making it possible to overcome transmission power constraints in a single user terminal, and to virtually overcome limitations in the number of antennae. When riding in a car with a UE, the antenna on the car can also be used virtually as the UE’s antenna to improve communications performance.
Here, communication between a UE and its peripheral devices requires a short-range but extremely wideband signal transmission. Since the capabilities required for wireless signal processing are limited in small devices such as watches and glasses, complex wireless signal processing should be avoided in such devices. Therefore, it is expected that the technology mentioned at the beginning will be introduced.
Technologies to efficiently utilize spectrums:
It is expected that the spectrum for future IMT systems will continue to follow the mixed use of high, medium, and low-frequency bands as in the IMT-2020 system, but with potentially larger bandwidths and higher operating frequencies in different bands, i.e. using a mix of centimetre, millimetre, and terahertz waves. Bands below 6 GHz, millimetre waves, and terahertz spectrum resources can be utilized jointly to provide various wireless links of different bandwidths and beam-propagation characteristics that satisfy the wide range of service requirements of future IMT systems. It is also envisioned that the diverse future use cases, followed by their different system requirements, for DL and UL transmission services can be better met by using the propagation and bandwidth characteristics of different frequency bands.
Spectrum utilization can be further enhanced by efficiently managing resources through technologies such as advanced carrier aggregation (CA) and distributed cell deployments (cell-free/distributed MIMO). By enabling devices to simultaneously and flexibly connect to a set of carriers, which are offered in a set of nodes according to availability and necessity, higher bandwidths can be achieved. Therefore, we can achieve higher rates and the usage of available bands can be steered towards best efficiency. In distributed MIMO, a set of network nodes act as one cell-less system that enable high-density deployment and spectral reuse. This allows for efficient antenna and transport solutions, which can more efficiently utilize spectrum resources through central coordination.
In addition to the above, there are also alternative explorations for spectrum utilization improvements.
Spectrum sharing technologies:
Spectrum sharing refers to when two or more radio systems operate in the same frequency band. Fundamentally, two forms of spectrum sharing are present: 1) horizontal spectrum sharing between systems with the same level of access rights to the spectrum, and 2) vertical spectrum sharing between systems with different levels of access rights to the spectrum. Vertical and horizontal spectrum sharing are not mutually exclusive. Current IMT-2020 systems involve various combinations of horizontal and vertical spectrum sharing through different techniques for interference management. The same is expected in IMT for 2030 and beyond. Spectrum sharing in specific areas, such as remote areas where spectrum may be unused or underused, will allow for quicker resolutions in interference management problems, e.g., more bandwidth for backhaul links leading to more energy efficient operations.
[Work on intelligent spectrum management technologies that enable opportunistic and intelligent spectrum sharing is now necessary in guaranteeing the continued development of future wireless network services and applications. This applies to intelligent database-driven spectrum sharing, smart spectrum sensing, intelligent software defined radios, and reconfigurable radio networks. All of these are expected to play an important role in addressing demand for next generation gigabit wireless services while enabling the broadband connectivity and digital inclusion in underserved areas.]
New medium access control (MAC) designs based on spectrum-sensing or spectrum-sharing have been considered. In order to evolve future IMT systems with a dynamic spectrum sharing nature, entire radio resource control (RRC) and radio access network (RAN) layer 2 (L2) frameworks need to be redesigned. Such dynamic spectrum requests from each subsystem are expected to come from various computing needs in devices, implying that future MAC must be redesigned for computing and communication convergence. The edge-cloud computation/architecture for new MAC is necessary, where a trade-off in computing and communication must be carefully considered. Massive training-data upload in uplink also requires new MACs to achieve accurate spectrum sharing.
Key aspect is the centralization or decentralization of spectrum sharing control, where this decision is dependent on the type of application and network environment.
Enabling the transition from IMT-2020 to IMT systems for 2030 and beyond will require a smooth transition from one technology to the other while maintaining optimum use of spectrum resources. IMT for 2030 and beyond should facilitate co-existence between the two technologies in order to allow a network operator to divide spectrum between the two technologies while balancing the bandwidth allotted to each technology according to user demand while utilizing both technologies simultaneously.
Technologies for broader frequency spectrum:
By changing the higher frequency spectrum from “millimetre waves” to “terahertz waves,” we use a drastically wider bandwidth compared to IMT-2020. For this reason, studies have started researching the possibility of achieving “extreme high data rate and high capacity” communication exceeding the IMT-2020 peak data rate requirements. Currently, “radio waves” up to about 300 GHz are considered to be within the scope of IMT for 2030 and beyond. However, unlike millimetre waves, terahertz waves must travel through a straight path and cannot propagate long distances. Thus, it is necessary to carry out technical studies on terahertz waves to identify their radio propagation characteristics and establish their propagation model, as well as study how to utilize these waves based on various network configurations.
Regarding device technology, it is necessary to implement a digital signal processing circuit capable of supporting wider bandwidths, a digital to analog converter, and an analog to digital converter at low cost and low power consumption. Additionally, antennas, filters, amplifiers, mixers, and local oscillators that operate in high frequency bands must be developed to be compatible with massive MIMO’s multiple antenna elements. RF (Radio Frequency) circuits must also be enhanced for higher performance and higher integration in high frequency bands exceeding 100 GHz.
The radio access technologies for such high frequency bands and the current bands for IMT systems have common technical issues regarding coverage and power efficiency. Here, single-carrier signal waveforms are preferred over OFDM signal as a radio technology due to their power efficiency. As we apply radio technologies, including integrated access and backhaul, to a wider range of areas, the importance of power-efficient radio technology like single carrier may increase.
Technologies to enhance energy efficiency and low power consumption:
Up until now, humans have been a principal data consumer, but in the future, the main agents of data consuming will be gradually shifted from human to the smart machines equipped with AI. In alignment with this, a paradigm-shift from the smartphone dominated era to a multi-stream era, where various types of terminals, not only wearables, skin-patches, bio-implants, exoskeletons integrated with advanced man-machine interfaces such as gestures, haptics, and brain sensors but also cars, UAVs, and robots equipped with AI, will be the norm while smartphones still being around us. This diversification of terminals will lead to new verticals to emerge and prosperous.
Future IMT systems are expected to support about a trillion devices, mainly driven by the surge in demand for IoT devices that cover a wide variety of applications such as smart cities, smart industry, and smart homes. A key category is power-constrained devices that are meant to be left in place for very long periods of time, stretching into several years. This may be because the devices are inaccessible, or it is difficult or expensive to reach them once installed. These devices may perform a wide range of functions such as asset tracking, supply chain logistics and infrastructure monitoring. Such devices may also include the category of Internet-of-Tags, which involves tracking, sensing or actuation functions. The need to improve energy efficiency has given rise to the field of energy-efficient communications, or green communications.
Low energy consumption issues can be considered from both the user device and the network’s perspectives. Technological advances on AI/ML, molecular, backscatter and visible light communications, fog/edge computing, and metamaterials/metasurfaces aim at lowering devices’ and network’s power consumption [11]. Efficient low-overhead communications are appealing to save overhead-related energy at the devices. E.g., by using channel state information (CSI)-limited/free schemes instead of training-based instantaneous CSI. On the other hand, network densification, distributed antenna deployments, moving/flying transmitters can shorten the communication distances, lowering communications’ energy consumption at devices’ side, and RF pollution in general. Reconfigurable antennas and rotating antennas are also promising technologies in this regard.
Wireless charging technologies:
Support of energy harvesting from wireless signals can eliminate an IoT device’s need to draw power from its battery for downlink signal detection and processing, which enables “zero-energy” radio operations. It is also possible to utilize natural energy sources for energy harvesting to meet this requirement, e.g., solar power, etc.
Wireless charging through RF wireless energy transfer (WET) has emerged as a promising charging technology. WET is currently being considered, analyzed and tested as a nascent stand-alone technology, and its wide integration to main wireless systems can be envisioned in the coming years. However, increasing the end-to-end efficiency, supporting mobility at least at pedestrian speed, facilitating ubiquitous power accessibility within the network coverage area, resolving the safety and health issues of WET systems, compliance with regulations, and enabling seamless integration with wireless communications are the main challenges ahead. Energy beamforming is among the most appealing techniques to enable WET as an efficient solution for powering future IoT networks. Energy beamforming also allows transmitted signals to adapt to the propagation environment, thus optimizing wireless energy delivery.
Backscattering communications:
Backscattering technology is an alternative approach for low power and low-cost communication. A device can send information by modulating and reflecting received wireless signals from ambient sources, without the need for power hungry transceivers, amplifiers, and other traditional communication modules. Thus we can achieve extremely low power consumption and low-cost communication through backscattering technology. It can harvest the energy of the ambient wireless signals and/or other energy for its communication, and therefore achieve nearly zero power communication. Ambient Backscatter Communication (AmBC) is referred to as the backscattering communication system that exploits ambient RF signals to transmit information bits without active RF transmission. The main challenges for these backscattering technologies include interference between backscattering signals and source signals, and limited communications range and data rates. Therefore, the techniques that must be developed for backscattering communication include modulation and channel coding, signal detection algorithms, interference coordination techniques, combinations with MIMO technology, multi-user access approaches, etc.
On-demand access technologies:
Another alternative approach to resolve low power communication is the on-demand passive device using the energy of received signals to trigger the wakeup of the receiving chain. The on-demand passive device would stay in sleeping mode with zero power consumption and will have the receiver waken up when the network sends the wakeup signals when data arrival, which turns on the transceiver to switch to Connected status. The zero-energy passive device for triggering UE wakeup would be particular usefully for machine type communication, wearable devices, health devices, and general mobile phone. In order to support the zero power passive device of UE wakeup, the next generation wireless system needs to design the network and control signal for on-demand access with UE wakeup passive device.
The UE can support on-demand network access based on backscattering technology to minimize the power consumption. The challenge of the on-demand network access with passive wakeup device is the receiver sensitivity. This will limit the coverage of the passive wakeup device. In order to accommodate the low receiver sensitivity of the frond-end passive device, the wakeup signals need to transmit in much higher density comparing to that of the traditional base station deployments. This requirement will not only be difficult to accomplish the blank coverage of on-demand network access but also increase the network energy consumption of tracking the UE with front-end wakeup passive devices. The low receiver sensitivity would hinge the coverage and development of next generation wireless network.
The on-demand access technologies for improving energy efficiency are to have the front-end wakeup device with zero or low power consumption in triggering the wakeup of UE receiver of the next generation wireless technologies. The UE receivers and transmitter circuits of the next generation wireless technologies would be in sleeping state, which most of the hardware, such ASCI, DSP, controller, and memory, are turned off and software are in the standby state. The front-end wakeup device would be used mainly for monitoring and receiving wakeup signals in active or passive way. The low-power active device, e.g. low-voltage tune RF (TRF) Wakeup receiver with passive RF gain and high gain envelope detection, used for front-end wakeup device could extend the receiver sensitivity. Once the wakeup signal is detected by the front-end wakeup device, the wakeup device would activate the hardware and initialize the software from the sleeping state to active state.
If an ultra-low power simplified receiver technology is used to continuously monitors wake-up signal, the power consumption could be dramatically reduced and the of the IoT devices can be extended significantly while low paging latency can be guaranteed. To meet the power consumption budget, the ultra-low power receiver may not require digital receivers or digitize the RF signal directly or even be a passive envelope detector, but pursues simple schemes for modulation, e.g., On-Off Keying (OOK) or Frequency-Shift Keying (FSK), and coding, e.g., Manchester coding.
The system designs of next generation wireless technologies need to take the processing time of hardware activation and software initialization into consideration for the on-demand access technologies to achieve optimum UE energy efficiency. The next generation cellular technologies would not only be standalone but always be integrated with the legacy technologies in the mobile phone for multi-technologies multi-connectivity.
Technologies to natively support real-time services/communications:
There are two essential technology components that support real-time communications and realize extreme low latency.
One is accurate time and frequency information shared in the terrestrial network. Especially when network nodes equip compact atomic clocks, their high holdover performance can dramatically reduce synchronization iterations over the local network. The high frequency accuracy obtained from the atomic clocks also allows reducing the frequency offset between Tx and Rx, leading to the low BER particularly in high carrier frequency. The collection of the time differences among node clocks enables the estimation of more stable and robust time using maximum likelihood method, and the result can be delivered back to each node for their self-corrections. Wireless Space-Time Synchronization, where clocks are synchronized at Pico second level together with the determination of positions, is another method on which low latency communication protocol can be built with a capability of autonomous and distributed operations. Such synchronized network supports the schedule management in edge processing in mobile backhauls. The common time and frequency can be traceable to the standard time or frequency by linking one node to the precision time/frequency source.
Another enabler is fine-grained and proactive just-in-time radio access which incorporates the extremely short transmission time intervals (TTI) for the scheduling, leading to the reduction of the buffering and channel access delay. The benefit of these two technologies can be further enhanced by time-sensitive communications protocols, which enables the prioritization of latency-sensitive or mission-critical traffic, leading to real-time communications. Resource management can be supported by leveraging application-domain information about the predictability of actual resource requirements considering the context and traffic characteristics. Periodic transmissions can be pre-scheduled with given and precise time boundaries while AI and ML tools can be used to schedule algorithms. Resource allocation for real-time communications may also span over a multi-dimensional solution space comprising multi-RAT, multi-link, etc.; managed by a dedicated real-time management function that is aware of resource needs, availability and surrounding environment. …………………………………………… CONTINUED…………………………………………………………………………………..
…………………………………………………………………………………………………………………………………………………………………………………………..
Status: This draft report is scheduled to be completed at the next ITU-R WP 5D meeting and if so will be submitted to ITU-R SG 5 for approval in November 2022.
References:
IMT towards 2030 and beyond (“6G”): Technologies for ubiquitous computing and data services
ITU-R: Future Technology Trends for the evolution of IMT towards 2030 and beyond (including 6G)
ITU-R Report in Progress: Use of IMT (likely 5G and 6G) above 100 GHz (even >800 GHz)
Intel FlexRAN™ gets boost from AT&T; faces competition from Marvel, Qualcomm, and EdgeQ for Open RAN silicon
Dell’Oro Group estimates the RAN market is currently generating between $40 billion and $45 billion in annual revenues. The market research firm forecasts that Open RAN will account for 15% of sales in 2026. Research & Markets is more optimistic. They say the Open RAN Market will hit $32 billion in revenues by 2030 with a growth rate of 42% for the forecast period between 2022 and 2030.
As the undisputed leader of microprocessors for compute servers, it’s no surprise that most of the new Open RAN and virtual RAN (vRAN) deployments use Intel Xeon processors and FlexRAN™ software stack inside the baseband processing modules. FlexRAN™ is a vRAN reference architecture for virtualized cloud-enabled radio access networks.
The hardware for FlexRAN™ includes: Intel® Xeon® CPUs 3rd generation Intel® Xeon® Scalable processor (formerly code named Ice Lake scalable processor), Intel® Forward Error Correction Device (Intel® FEC Device), Mount Bryce (FEC accelerator), Network Interface Cards – Intel® Ethernet Controller E810 (code name Columbiaville). Intel says there are now over 100 FlexRAN™ licensees worldwide as per these charts:
Source: Intel
A short video on the FlexRAN™ reference architecture is here.
FlexRAN™ got a big boost this week from AT&T. In a February 24, 2022 blog post titled “Cloudifying 5G with an Elastic RAN,” Gordon Mansfield, AT&T VP Mobility Access & Architecture said that “AT&T and Intel had co-developed an industry-leading advanced RAN pooling technology freeing 5G radios from the limitations of dedicated base stations, while enabling more efficient, resilient, and green 5G networks. DU-pooling will eventually be usable by the entire 5G operator community to drive the telecom industry’s goals of green and efficient wireless networks forward.”
DU pooling technology was made possible by combining AT&T’s deep knowledge of Open RAN technologies as one of the co-founders of the O-RAN Alliance with Intel’s expertise in general purpose processors and software-based RAN through its FlexRAN™ software stack running on Intel 3rd generation Intel® Xeon® Scalable processors. The open standards for communications between radios and DUs that were published by O-RAN enabled its development, and the result is a technology demonstrator implemented on FlexRAN™ software.
………………………………………………………………………………………………………………………………………………………………………………..
Intel is now facing new Open RAN competition from several semiconductor companies.
Marvell has just unveiled a new accelerator card that will slot into a Dell compute server (which uses x86 processors). Based on a system called “inline” acceleration, it is designed to do baseband PHY layer processing and do it more efficiently than x86 processors. A Marvell representative claims it will boost open RAN performance and support a move “away from Intel.” Heavy Reading’s Simon Stanley (see below) was impressed. “This is a significant investment by Dell in open RAN and vRAN and a great boost for Marvell and the inline approach,” he said.
Qualcomm, which licenses RISC processors designed by UK-based ARM, has teamed up with Hewlett Packard Enterprise (HPE) on the X100 5G RAN accelerator card. Like Marvel’s offering, it also uses inline acceleration and works – by “offloading server CPUs [central processing units] from compute-intensive 5G baseband processing.”
There is also EdgeQ which is sampling a “Base Station on a Chip” which is targeted at Open RAN and private 5G markets. Three years in the making, EdgeQ has been collaborating with market-leading wireless infrastructure customers to architect a highly optimized 5G baseband, networking, compute and AI inference system-on-a-chip. By coupling a highly integrated silicon with a production-ready 5G PHY software, EdgeQ uniquely enables a frictionless operating model where customers can deploy all key functionalities and critical algorithms of the radio access network such as beamforming, channel estimation, massive MIMO and interference cancellation out of the box.
For customers looking to engineer value-adds into their 5G RAN designs, the EdgeQ PHY layer is completely programmable and extensible. Customers can leverage an extendable nFAPI interface to add their custom extensions for 5G services to target the broad variety of 5G applications spanning Industry 4.0 to campus networks and fixed wireless to telco-grade macro cells. As an industry first, the EdgeQ 5G platform holistically addresses the pain point of deploying 5G PHY and MAC software layers, but with an open framework that enables a rich ecosystem of L2/L3 software partners.
The anticipated product launches will be welcomed by network operators backing Open RAN. Several of them have held off making investments in the technology, partly out of concern about energy efficiency and performance in busy urban areas. Scott Petty, Vodafone’s chief digital officer, has complained that Open RAN vendors will not look competitive equipped with only x86 processors. “Now they need to deliver, but it will require some dedicated silicon. It won’t be Intel chips,” he told Light Reading in late 2021.
…………………………………………………………………………………………………………………………………………………………………………………………………………………………..
Inline vs Lookaside Acceleration:
While Marvell and Qualcomm are promoting the “inline” acceleration concept, Intel is using an alternative form of acceleration called “lookaside,” which continues to rely heavily on the x86 processor, offloading some but not all PHY layer functions. This week, Intel announced its own product refresh based on Sapphire Rapids, the codename for its next-generation server processors.
Simon Stanley, an analyst at large for Heavy Reading (owned by Informa), said there are two key innovations. The first involves making signal-processing tweaks to the Sapphire Rapids core to speed up the performance of FlexRAN™, Intel’s baseband software stack. Speaking on a video call with reporters, Dan Rodriguez, the general manager of Intel’s network platforms group, claimed a two-fold capacity gain from the changes. “In the virtual RAN and open RAN world, the control, packet and signal processing are all done on Xeon and that is what FlexRAN enables,” he said.
The other innovation is the promise of integrated acceleration in future Sapphire Rapids processors. Sachin Katti, who works as chief technology officer for Intel’s network and edge group, said this would combine the benefits of inline acceleration with the flexibility of x86. That is preferable, he insisted, to any solution “that shoves an entire PHY layer into an inflexible hardware accelerator,” a clear knock at inline rivals such as Marvell and Qualcomm. Despite Katti’s reference to inline acceleration, Stanley does not think it is Intel’s focus. “None of this rules out an inline acceleration solution, but it does not seem to be part of the core approach,” he told Light Reading. “The key strategy is to add maximum value to Xeon Scalable processors and enable external acceleration where needed to achieve performance goals.”
Both inline and lookaside involve trade-offs. Inline’s backers have promised PHY layer software alternatives, but Intel has a major head start with FlexRAN™, which it began developing in 2010. That means lookaside may be a lot more straightforward. “The processor is in control of everything that goes on,” said Stanley during a previous conversation with Light Reading. “It is essentially the same software and makes life very easy.”
Larger network operators seemed more enthusiastic about inline during a Heavy Reading survey last year. By cutting out the processor, it would reduce latency, a measure of the delay that occurs when signals are sent over the network. That could also weaken Intel, reducing power needs and allowing companies to use less costly CPUs. “If you use inline, you probably need a less powerful processor and less expensive server platform, which is not necessarily something Intel wants to promote,” Stanley said last year.
References:
https://www.intel.com/content/www/us/en/communications/virtualizing-radio-access-network.html
EdgeQ Samples World’s 1st Software-Defined 5G Base Station-on-a-Chip
Light Counting: Wireless infrastructure market grew at a slower pace than in the past 2 years
In contrast to Dell’Oro Group’s assessment of the RAN market, Light Counting says that the wireless infrastructure market grew QoQ and YoY but at a slower pace than in the past 2 years. In addition, global sales were affected by supply chain issues that created logistical nightmares and led to increase in network node average sales prices.
This environment is divided into two spheres of influence, China versus the West and its allies. Both Ericsson and Nokia gained market share at the expense of Huawei and ZTE in 4Q21:
–>Ericsson moved into the #1 position, Huawei dropped to #2, Nokia came back to #3 while ZTE slipped to #4; although Samsung gained share, it was not enough to surpass ZTE. Note that Dell’Oro still has Huawei as #1.
For the full year, Ericsson finished neck and neck with Huawei with just 1 percentage point separating the 2 vendors. “In 4Q21, the wireless infrastructure market equilibrium reached and reported last quarter was on full display: the 2 opposite spheres of influence were fully balanced. As a result, the 2 respective markets reached roughly the same size and Ericsson closed the market share gap with Huawei. 2021 was a reset year that signaled a return to normalcy with a market peak in 2022,” said Stéphane Téral, Chief Analyst at LightCounting Market Research.
After this year’s peak, our model points to a slow single-digit declining market. This bell-shaped pattern reflects the differences in regional and national agendas, including the COVID-19 impact as well as the impact of “the 2-year step function”—2 years (2019 and 2020) in a row of double-digit growth. The model considers all the 5G 3-year rollout plans we have gathered from many service providers and indicates strong activity through 2022 and 2023.
About the report:
Wireless Infrastructure quarterly report analyzes the wireless infrastructure market worldwide and covers 2G, 3G, 4G and 5G radio access network (RAN) and core network nodes. It presents historical data from 2016 to 2021, on quarterly market size and vendor market shares, and a detailed market forecast through 2027 for 2G/3G/4G/5G RAN, including open vRAN, and core networks (EPC, vEPC, and 5GC), in over 10 product categories for each region (North America, Europe, Middle East Africa, Asia Pacific, Caribbean Latin America).
The historical data accounts for the sales of more than 30 wireless infrastructure vendors, including vendors that shared confidential sales data with LightCounting. The market forecast is based on a model correlating wireless infrastructure vendor sales with 20 years of service provider network rollout pattern analysis and upgrade and expansion plans.
For more information about the market report go to LightCounting.com or email us at [email protected].
References:
|
Dell’Oro: Mobile Core Network and MEC Stagnant in 2021; Will Growth in 2022
According to a recently published report from Dell’Oro Group, the total Mobile Core Network (MCN) and Multi-access Edge Computing (MEC) market 2021 revenue growth slowed to the lowest rate since 2017. The growth rate is expected to go higher in 2022 with the expansion of the 21 commercial 5G Standalone (5G SA) MBB networks that were deployed by the end of 2021, coupled with new 5G SA networks readying to launch throughout the year.
“MCN revenues for 2021 were lower than expected due to an unexpectedly poor fourth quarter performance. The revenues for 4Q 2021 were lower than in 4Q 2020. The last time that happened was in 4Q 2017,” stated Dave Bolan, Research Director at Dell’Oro Group. “The poor performance in 4Q 2021 was due to negative year-over-year revenue performance for the China region. The performance for the rest of the world was almost flat but still negative and obviously was not enough to offset the decline in China.
“The growth in 2021 came from the 5G MCN segment and was not enough to offset the decline in 4G MCN and IMS Core. Of the 21 5G SA networks commercially deployed Huawei is the packet core vendor in seven of the networks, including the three largest networks in the world located in China, and Ericsson is the packet core vendor in 10 of the networks. Not surprisingly, of the top five vendors, only Huawei and Ericsson gained overall MCN revenue market share during 2021.
“Looking at the MEC market, MEC is still a fraction of the overall MCN market, but we believe two recent announcements by Ericsson are noteworthy because, in our opinion, Ericsson will accelerate the adoption of MEC and help 5G MNOs monetize their networks by coalescing MEC implementations around the 3GPP standards. Ericsson claims to be the first to leverage recent advancements by the 3GPP standards body for edge exposure, and network slicing all the way through to a smartphone,” continued Bolan.
Additional highlights from the 4Q 2021 Mobile Core Network Report:
- Top-ranked MCN vendors based on revenue in 2021 were Huawei, Ericsson, Nokia, ZTE, and Mavenir.
- The EMEA region was the only region to grow in revenue in 2021.
- The APAC region was the largest region in revenue for 2021.
As of December 31, 2021 there were 21 known 5G SA eMBB networks commercially deployed.
5G SA eMBB Network Commercial Deployments |
|
Rain (South Africa) |
Launched in 2020 |
China Mobile |
|
China Telecom |
|
China Unicom |
|
T-Mobile (USA) AIS (Thailand) True (Thailand) |
|
China Mobile Hong Kong |
|
Vodafone (Germany) |
Launched in 2021 |
STC (Kuwait) |
|
Telefónica O2 (Germany) |
|
SingTel (Singapore) |
|
KT (Korea) |
|
M1 (Singapore) |
|
Vodafone (UK) |
|
Smart (Philippines) |
|
SoftBank (Japan) |
|
Rogers (Canada) |
|
Taiwan Mobile |
|
Telia (Finland) |
|
TPG Telecom (Australia) |
The Dell’Oro Group Mobile Core Network & Multi-Access Edge Computing Quarterly Report offers complete, in-depth coverage of the market with tables covering manufacturers’ revenue, shipments, and average selling prices for Evolved Packet Core, 5G Packet Core, Policy, Subscriber Data Management, and IMS Core including licenses by Non-NFV and NFV, and by geographic regions. To purchase this report, please contact us at [email protected].
References:
https://www.delloro.com/news/mobile-core-network-stagnant-in-2021-poised-for-growth-in-2022/
https://techblog.comsoc.org/2021/12/01/delloro-5g-sa-core-network-launches-accelerate-14-deployed/
Vi and A5G Networks partner to enable Industry 4.0, Smart Cities in “Digital India” using 4G spectrum
India network operator Vodafone Idea Limited (Vi) today announced its collaboration with Nashua, NH based A5G Networks, Inc. to enable industry 4.0 and smart mobile edge computing in India.
Vi and A5G Networks have together set up a pilot private network in Mumbai utilizing existing 4G spectrum.
Vi’s association with A5G Networks is in line with its commitment to realize Digital India dreams with the latter’s differentiated and unique 4G, 5G, and Wi-Fi autonomous software for distributed Networks. A5G Networks software is fully cloud-native containerized built for hybrid and multi-cloud infrastructure.
“Vi is committed to providing superior services to digital enterprises and consumers to enhance user experiences, empowered by an autonomous network,” said Mr. Jagbir Singh, Chief Technology Officer, Vodafone Idea Ltd. “As part of our digital transformation journey on the 5G roadmap, we are happy to partner with A5G Networks to bring new services enabling industry 4.0 and smart cities in the digital era.”
“We are excited to be a part of this important journey for Digital India with Vi,” said Rajesh Mishra, Founder, and CEO of A5G Networks. “Vi is committed to delivering best-in-class services to their subscribers and driving the Digital India movement. Success depends upon a highly resilient, secure, and flexible network infrastructure.
In November 2020, Mishra told Light Reading he decided to start A5G Networks due to the growth in the Open RAN market, where Parallel Wireless has been a leading player. “When you have a lot of [Open] RANs, what happens then?” Mishra said, explaining that A5G Networks will sell software for network orchestration. “The timing was right,” he said of his departure from Parallel Wireless, citing the status of open RAN in the wider wireless market. “I’ve got to start working and building.”
Vi is partnering with technology leaders and innovators to set up digital networks enabling several low latency applications, private networks, smart cities, and connected cars.
The 5G Open Innovation Lab (“5GOILab”), a global applied innovation ecosystem for corporations, academia and government institutions, selects 15 early- to late-stage companies twice a year to join our enterprise innovation program. Companies are led by founders that have demonstrated a vision and strategy for leveraging 5G networks to achieve digital transformation in the enterprise and advance applications and solutions in artificial intelligence, augmented reality, edge computing and IoT. A5G and Santa Clara CA based EdgeQ (4G/5G base station on a chip) were selected to participate. A5G Networks for enabling distributed and disaggregated network of networks to create autonomous private and public 4G, 5G, and WiFi Networks.
The Lab does not take an equity position in its member companies, rather, companies collaborate with 5G technology experts and business advisors through CEO and CTO roundtables, private working sessions, virtual networking and social events, and opportunities to meet with the Lab’s extensive partner network of venture capital firms.
About Vodafone Idea Limited:
Vodafone Idea Limited is an Aditya Birla Group and Vodafone Group partnership. It is India’s leading telecom service provider. The Company provides pan India Voice and Data services across 2G, 3G, 4G and has a 5G ready platform. With the large spectrum portfolio to support the growing demand for data and voice, the company is committed to deliver delightful customer experiences and contribute towards creating a truly ‘Digital India’ by enabling millions of citizens to connect and build a better tomorrow. The Company is developing infrastructure to introduce newer and smarter technologies, making both retail and enterprise customers future ready with innovative offerings, conveniently accessible through an ecosystem of digital channels as well as extensive on-ground presence.
The company offers products and services to its customers in India under the TM Brand name “Vi”.
For more information, please visit: www.MyVi.in and www.vodafoneidea.com
About A5G Networks Inc:
A5G Networks Inc. is a leader and innovator in autonomous mobile network infrastructure. The company is headquartered in Nashua, NH, USA with offices in Pune MH, India. A5G Networks is pioneering secure and scalable 4G, 5G and Wi-Fi software to enable distributed network of networks. To learn more about A5G Networks, visit www.a5gnet.com
References:
ONF’s Private 5G Connected Edge Platform Aether™ Released to Open Source
Furthering its mission to seed the industry with innovative open source platforms to advance 5G and software-defined open networking, the Open Networking Foundation (ONF) today announced that its Aether Private 5G + Edge Cloud platform, and related component projects SD-Core™, SD-RAN™ and SD-Fabric™ have now all been released under the permissive Apache 2.0 open source license.
Aether is the first open source 5G Connected Edge platform for enabling enterprise digital transformation. Aether provides 5G mobile connectivity and edge cloud services for distributed enterprise networks. Aether represents a complete, open 5G solution, addressing RAN through Core, democratizing availability of a robust and complete software-defined 5G platform for developers.
In just 2 years, Aether has achieved significant milestones and demonstrated numerous industry firsts:
- Aether was selected for the $30M DARPA Pronto project for building secure 5G
- Aether was deployed in an ongoing field trial with Deutsche Telekom in Berlin
- Aether has been deployed in over 15 locations, operating 7×24 and delivering production-grade uptime
- Aether is the only private 5G solution leveraging the benefits of open RAN for private enterprise use cases
In the process of achieving these remarkable milestones, Aether has matured to the point where it is ready to be released to the community for broad consumption.
Aether is built upon a number of world-class component projects that are each in their own right best-in-class. Today, all the component projects are also being open sourced, including:
SD-Core 4G/5G dual-mode cloud native mobile core
SD-Fabric SDN P4 Programmable Networking Fabric
SD-RAN Open RAN implementation with RIC and xApps
Demonstrating Aether at MWC:
The ONF stand #1F66 at Mobile World Congress (MWC) will showcase an Aether deployment, demonstrated as a cloud managed offering optimized for enterprise private networks. In the demo, devices (UEs), such as mobile phones, cameras, sensors and IoT devices, can be aggregated into device-groups, and each device-group assigned a 5G slice and connected to specific edge applications thereby extending the slicing concept to individual applications and services. Each slice is attached to specific Industry 4.0 application(s), thereby creating distinct slices for different use cases and guaranteeing each slice secure isolation for security along with bandwidth, latency, quality of service (QoS) and resource assurances.
Two Industry 4.0 applications are demonstrated running over the Aether Private 5G using Intel technologies enabling ONF SD-RAN and SD-Core ranging from Intel Xeon Scalable processors, Intel vRAN accelerator ACC100, Intel Tofino Intelligent Fabric Processors, to software offerings such as Intel’s FlexRAN reference architecture, Intel Smart Edge Open, and the Intel Distribution of OpenVINO. The first is a security application built on Intel’s Distribution of OpenVINO toolkit, an intelligent AI/ML edge platform running on Aether 5G and leveraging Aether’s Industry 4.0 APIs to dynamically change the network slice to suit the application’s real time requirements for connectivity. The demo first creates an application slice for video surveillance, grouping together a set of streaming cameras. Next, whenever a human is detected in the field of vision for a camera, the solution automatically increases the 5G bandwidth for the impacted camera and instructs the camera to increase its resolution so a high-def recording can be made. With this approach, 5G wireless capacity is reserved for mission critical applications, and bandwidth is dynamically allocated precisely when and where needed. All of this is performed in real time without human intervention.
Anomaly detection is featured in the second Industry 4.0 application. Based on Intel’s Anomalib, an Aether application slice carries a mission critical video feed of a manufacturing / packaging line which is channeled into an anomaly detection edge-app. The edge app is trained using defect free data and uses probabilistic AI to detect anomalies like spoiled fruit (bananas). Given the time critical nature of detecting faults early, the app is built to work in a real time fashion over Aether to deliver results at line rate for typical industrial and packaging production lines.
Getting Started with Aether:
It is easy to get started using Aether Private 5G. Aether can be deployed by developers on a laptop using Aether-in-a-Box, a simple pre-packaged end-to-end development environment including RAN through mobile core. By making such a complete solution available in a footprint that can run on a laptop, developers can get started with minimal friction. Developers can then organically grow the test deployment at their own pace into a fully disaggregated production-grade deployment, including production-grade RAN radios, disaggregated UPF edge processing and cloud-native mobile core. This makes it easy to get started with Aether, while assuring developers that Aether can scale to meet the needs of even the most demanding commercial applications.
The ONF Community:
Aether has been an amazing collaboration between ONF engineering resources and an active community that includes: Aarna Networks, AirHop, AT&T, Binghamton University, China Mobile, China Unicom, Ciena, Cohere Technologies, Cornell University, Deutsche Telekom, Edgecore Networks, Facebook Connectivity, Foxconn, Google, GSLab, HCL, Intel, NTT Group, Microsoft, Princeton University, Radisys, Sercomm, Stanford University and Tech Mahindra.
About the Open Networking Foundation:
The Open Networking Foundation (ONF) is an operator-led consortium spearheading disruptive network transformation. Now the recognized leader for open source solutions for operators, the ONF first launched in 2011 as the standard bearer for Software-Defined Networking (SDN). Led by its operator partners AT&T, China Unicom, Deutsche Telekom, Google, NTT Group and Türk Telekom, the ONF is driving vast transformation across the operator space. For further information visit http://www.opennetworking.org
References:
To learn more about the project and join our growing community by reviewing the Aether documentation, by visiting the ONF booth at MWC Barcelona (#1F66), or registering here to be sent a pointer to the recorded demo to be released after MWC. Developers can also easily get started by running Aether-in-a-Box on a bare metal machine or VM.
RAN growth slowed in 4Q-2021, but full year revenues rose to ~$40B – $45B; Open RAN market highlights
- Global RAN rankings did not change with Huawei, Ericsson, Nokia, ZTE, and Samsung leading the full year 2021 market.
- Ericsson, Nokia, Huawei, and Samsung lead outside of China while Huawei and ZTE continue to dominate the Chinese RAN market.
- RAN revenue shares are changing with Ericsson and Samsung gaining share outside of China.
- Huawei and Nokia’s RAN revenue shares declined outside of China.
- Relative near-term projections have been revised upward – total RAN revenues are now projected to grow 5 percent in 2022.
Open RAN Market – Highlights
- While 5G offers superior performance over 4G, both will coexist comfortably into the 2030s as the bedrock of next-generation mobile networks. There are three perspectives that help to underline this point. Firstly, unlike voice-oriented 2G and 3G (which were primarily circuit-switched networks with varying attempts to accommodate packet-switching principles), 4G is a fully packet-switched network optimized for data services. 5G builds on this packet switching capability. Therefore, 4G and 5G networks can coexist for a long while because the transition from 4G to 5G does not imply or require a paradigm shift in the philosophy of the underlying technology. 5G is expected to dominate the OPEN RAN market with $22B TAM in 2030 with a growth rate of 52% as compared to a 4G growth rate of 31% between 2022 and 2030
- Within OPEN RAN radio unit (RU), Small cells and macrocells are likely to contribute $7.5B and $2.4B TAM by 2030 respectively. It is going to be a huge growth of 46% from the current market size of $327M for such cells in the OPEN RAN market
- The sub-6GHz frequency band is going to lead the market with a 70% share for OPEN RAN although the mmWave frequency band will have a higher CAGR of 67% as compared to 37% CAGR of Sub-6GHz. Most focus has been on the 3.5 GHz range (i.e., 3.3-3.8 GHz) to support initial 5G launches, followed by mmWave awards in the 26 GHz and 28 GHz bands. In the longer term, about 6GHz of total bandwidth is expected for each country across two to three different bands
- Enterprises are adopting network technologies such as private 5G networks and small cells at a rapid rate to meet business-critical requirements. That’s why public OPEN RAN is expected to have the majority share of round ~95% as compared to the small market for the private segment
- At present, it is relatively easy for greenfield service providers to adopt 5G open RAN interfaces and architectures and it is extremely difficult for brownfield operators who have already widely deployed 4G. One of the main challenges for brownfield operators is the lack of interoperability available when using legacy RAN interfaces with an open RAN solution. Still, Mobile network operators (MNOs) throughout the world, including many brownfield networks, are now trialling and deploying Open RAN and this trend is expected to grow with time to have a larger share of brownfield deployments
- Asia Pacific is expected to dominate the OPEN RAN market with nearly 35% share in 2030. OPEN RAN market in the Asia Pacific is expected to reach USD 11.5 billion by 2030, growing at a CAGR of 34% between 2022 and 2030. Japan is going to drive this market in the Asia Pacific although China will emerge as a leader in this region by 2030. North America and Europe are expected to have a higher growth rate of more than 45% although their share will be around 31% and 26% respectively in 2030
References:
Frontier’s FTTP to reach 10M locations by 2025; +192,000 FTTP passings in 4Q-2021
Frontier Communications says it’s on track with a plan to add 1 million fiber-to-the-premises (FTTP) locations in 2022. Under the plan, Frontier expects to expand its FTTP footprint to 10 million locations by 2025, up from about 4 million today. However, fiber-related revenue growth has yet to match up to recent fiber subscriber and NPS gains. Frontier reported Q4 2021 fiber revenues of $675 million, down from $684 million in the year-ago period.
“We’ve got good supply resilience. We’ve expanded the number of vendors in every category, and we’ve got good forward cost visibility as well,” Nick Jeffery, Frontier’s president and CEO, said Wednesday on the company’s 4th quarter 2021 earnings call.
But he acknowledged that Frontier, which has taken on a “fiber first” posture, was “lucky,” in that the company started to accelerate its fiber build ahead of many other telcos and cable operators.
“We’re in relatively good and insulated position because, frankly, we got there first and we signed up the terms before anyone else had a chance to do so,” Jeffery said.
Supply chain constraints didn’t slow Frontier’s fiber build in Q4 2021, as the company added a record 192,000 FTTP passings in the quarter, improving on the 185,000 new fiber passings built in Q3 2021. Last month Frontier announced that it added a record 45,000 fiber broadband subscribers in the fourth quarter of 2021, beating its prior record in Q3 2021 by more than 50%. That was also enough to overtake subscriber losses from Frontier’s legacy copper broadband business, as the company posted a Q4 net gain of 14,000 consumer broadband subs. Frontier ended 2021 with 1.33 million fiber broadband customers, up 8% year-over-year. About half of Frontier’s consumer broadband sub base is now served by fiber.
Frontier, which launched a symmetrical 2-Gig fiber service on February 22nd, is seeing solid penetration in its existing “base” FTTP markets and positive signs in newer fiber buildout areas. Penetration in Frontier’s relatively mature base-fiber footprint rose to nearly 42%, and the company expects that to eventually increase to 45%.
In its FTTP expansion effort, Frontier is seeing penetrations of 22% at the 12-month mark, expecting that to rise to 25% to 30% at 24 months. In later years, the company expects the percentage to jump to a terminal penetration of 45%.
“We’re now, I believe, gaining market share in all of our fiber markets against every single one of our competitors,” Jeffery said. “That is not a moment in time or an aberration. That’s the result of strong operational execution across many different dimensions, and I think we’ll see that carry forward into the future.”
Frontier said its fiber-related net promoter score (NPS) went positive for the first time in November 2021, while fiber churn dropped to 1.32% in Q4 2021, improved from 1.56% in the year-ago quarter.
Scott Beasley, Frontier’s CFO, said Frontier expects fiber revenues to reach positive territory as 2022 progresses, driven by the growth of its consumer fiber segment and a stabilization of the company’s business and wholesale units.
MoffetNathanson analyst Nick Del Dio had this to say in a research note to clients:
“Large scale network upgrade projects take years to complete. Achieving targeted levels of penetration once the network in a given geography has been upgraded takes years, too. By our estimates, it will be about a decade before Frontier’s potential will be fully realized.”
“Frontier’s operating metrics continue to move in the right direction. Total consumer broadband net adds were positive for the first time in many, many years; copper losses were stable, while the company gained fiber subscribers in both new and existing markets. Fiber gross adds and churn both improved in Q2. Frontier’s fiber NPS scores have improved dramatically over the past year, going from -24 in January 2021 to +9 in December 2021, a 33 point swing, with NPS scores associated with new customers better than those associated with old customers. The company expects continued strength in fiber and better churn in copper in coming periods. Consumer fiber broadband ARPU declined about $1 sequentially, which management attributed to promoting autopay adoption and giving gift cards for new customers.”
……………………………………………………………………………………………………………………………………………………………………………………………
Frontier’s plan to bring FTTP to 10 million locations by 2025 includes what the company calls Wave 1 and Wave 2 builds. Wave 3 includes another 5 million locations that might be built out using supplemental government funding and partnerships, or could be tied to potential divestments or system swaps. Frontier’s analysis of the Wave 3 section continues, and the company should have some specific guidance in the coming months, said John Stratton, Frontier’s executive chairman of the board.
Q4 2021 was the last quarter in which Frontier received subsidy revenues from the Connect America Fund (CAF) II program. Yet they hope President Biden’s infrastructure bill passes and directs revenues to telcos to help them build out their networks.
“It’s complicated,” Stratton said with respect to government stimulus funding, noting that Frontier expects to be an active participant in the new infrastructure bill. “The rules of engagement, both at the federal and state level, are still being worked… Our thought process is that this a 2023 and onward in terms of it becoming something that starts to scale.”
References:
Verizon, AWS and Bloomberg media work on 4K video streaming over 5G with MEC
Verizon, Bloomberg Media, Zixi and Amazon Web Services (AWS) are working together to test how 5G and mobile edge computing (aka Multi-access Edge Computing or MEC) can transform how global business news is produced, delivered and consumed. Using Verizon 5G Edge with AWS Wavelength, Bloomberg Media will be able to package and deliver live 4K Ultra High Definition (UHD) content without the need for satellites, allowing for fast and efficient content delivery.
Verizon 5G Edge with AWS Wavelength, a real-time cloud computing platform, brings AWS compute and storage services to the edge of Verizon’s wireless network. This, coupled with Zixi’s SDVP and ZEN Master control plane, shows that it is possible to change the way broadcast content is packaged and delivered. This combination of Zixi software minimizes the latency and simplifies the networking required to connect from hosted software services on 5G Edge with AWS Wavelength to the end user’s device while ensuring a high quality broadcast signal is maintained.
Media consumption today has its challenges for content providers. Broadcasters are looking to simplify their distribution workflows being driven by a ubiquitous content economy and consumers who want more live streamed 4K content, with quick start times and minimal buffering. To accomplish this, Bloomberg Media sends UHD video using Verizon 5G Edge with AWS Wavelength coupled with Zixi’s software to quickly process the video into multiple streams for broadcast across various platforms.
The companies also plan to test streaming Bloomberg TV+ 4K UHD content direct to consumers’ 5G-connected devices, via Verizon 5G Edge with AWS Wavelength, allowing users to access data rich content on market news and business insights on the go. This will be followed by another trial that will involve near real-time native translation of Bloomberg TV+ content for transcripts, captioning and subtitles distributed globally.
“5G and edge compute have the potential to revolutionize the media and entertainment space and reinvent how global business news is produced and consumed,” said Tami Erwin, CEO of Verizon Business. “By leveraging Verizon 5G Edge with AWS Wavelength and Bloomberg Media’s premium 4K UHD service, we’re testing how we can potentially reimagine the future of media delivery and the viewer experience.”
“Bloomberg Media is committed to continuous innovation and experimentation of technologies to better reach our global audience of business leaders with the insights, information and solutions they need,” said Roman Mackiewicz, Chief Information Officer at Bloomberg Media. “This proof of concept trial combines Verizon’s 5G and mobile edge computing capabilities with Bloomberg TV+ premium 4K UHD content to create a modern streaming news experience with the potential for true industry disruption.”
“It has been fantastic working with Verizon, Bloomberg Media and AWS to deliver pristine 4K UHD quality content over 5G while leveraging edge compute” said Gordon Brooks, Executive Chairman and CEO of Zixi. “Verizon 5G Edge with AWS Wavelength and Zixi can potentially transform the M&E industry.”
Last May, Verizon demonstrated 4K video on a camera connected to its 5G Ultra Wideband network in Verizon’s 5G Lab in Los Angeles, CA. With 5G, Verizon was able to record and stream TheHxliday’s performance in a visually lossless way, nearly eliminating the side-effects of image compression that’s visible to the naked eye.
The premise behind the 4K over 5G is that there’s a great demand for 4K streamed content over a cellular network. However, 4K resolution is only really noticeable on large screens and those are usually connected via WiFI- not cellular. 5G has been desperately searching for killer apps since it’s inception, but it remains highly debatable whether 4K streaming will provide one.
Launched in August 2020, Verizon 5G Edge with AWS Wavelength is currently available in 17 metropolitan areas in the U.S. Learn more information about Verizon 5G Edge and Verizon’s 5G technology.
References:
https://www.verizon.com/about/news/verizon-bloomberg-media-zixi-aws-5g-edge-compute