NGMN: 6G Key Messages from a network operator point of view

As 3GPP prepares for its Release 20 [1.], the Next Generation Mobile Networks Alliance (NGMN) has issued a 6G Key Messages statement saying that 6G can’t be just “another generational shift” and that lessons must be learned from “the mistakes of 5G.”  NGMN says that 6G must demonstrate clear, tangible benefits within a realistic techno-economic framework. Network Architecture needs to meet MNOs criteria for modularity, simplicity, openness, operational simplification, compatibility and interoperability, and trustworthiness while delivering economic and social sustainability. These factors are crucial to enable fast deployment and to support the development of market-aligned services that meet user demands.

“6G standards must be globally harmonized. It is expected to be built upon the features and capabilities introduced with 5G, alongside new capabilities to deliver new services and value. Such technological evolutions should be assessed with respect to their benefits versus their associated impact. 6G standards must learn from the mistakes of 5G, including multiple architecture options, features that are never used and use cases that have no market pull.”

NGMN insists that the introduction of 6G should not cost network operators more than necessary:

“The introduction of 6G should not necessitate a forced hardware refresh.  While new radio equipment is required for deployment in new frequency bands, the evolution toward 6G in existing bands should primarily occur through software upgrades, ensuring a smooth transition.”

Note 1.  According to 3GPP’s current planning, Release 20 will include a study phase, gathering technical input on potential 6G features, use cases, and architectural shifts. These discussions are intended to inform later specification work, likely in Release 21, aligned with the IMT-2030 submission process.  See Editor’s Note below for relationship between 3GPP’s 6G work and ITU-R IMT 2030.

THE NGMN 6G KEY MESSAGES PUBLICATION HAS BEEN ENDORSED BY THE NGMN BOARD OF DIRECTORS IN JUNE 2025:

Laurent Leboucher, Chairman of the NGMN Alliance Board and Orange Group CTO and EVP Networks, explained “6G should be viewed as a seamless evolution — fully compatible with 5G and propelled by continuous software innovation. The industry must move beyond synchronised hardware/software ‘G’ cycles and embrace decoupled roadmaps: one for hardware infrastructure, guided by value-driven and sustainable investments, and another — faster and demand-led — for software-defined business capabilities addressing real needs from society.”

“Along with presenting this consolidated view to 3GPP, this publication serves as a foundation for engaging with the broader industry, driving collaboration, innovation, and strategic direction in the evolving 6G landscape,” said Anita Döhler, CEO of NGMN . “A core tenet of our message is that 6G is not treated as another generational shift for mobile technology – it must be evolutionary.”

“Network evolution is essential for addressing ever-changing societal needs. To achieve this, we need to work collectively as an industry to ensure all future networks are secure, environmentally sound, and economically sustainable,” said Luke Ibbetson, Head of Group R&D at Vodafone and NGMN Board Director.

Key Categories:

• Enhanced Human Communications includes use cases of enriched communications, such as immersive experience, telepresence and multimodal interaction. Voice services must evolve in a business sustainable manner.

• Enhanced Machine Communications reflects the growth of collaborative robotics, requiring reliable communication among robots, their environment and humans.

• Enabling Services gather use cases that require additional features such as high accuracy location, mapping, or sensing.

• Network Evolution describes aspects related to the evolution of core technologies including AI as a service, energy efficiency, and delivering ubiquitous coverage.

Requirements and Design Considerations:

Sustainability: Minimising environmental impact, securing economic viability, and ensuring social sustainability is the key goal of 6G design.
Trustworthiness: Ensure that security and privacy are intrinsically embedded in the 6G system to protect against threats and provide solutions that measurably demonstrate this attribute.
Innovation: A new radio interface should demonstrate significant benefits over and above IMT-2020, as mentioned in the Radio Performance Assessment Framework publication, while considering the practical issues related to deployments in a realistic techno-economical context. It is also critical for innovation that the entirety of the upper 6 GHz band would be available to mobile networks.

Radio Performance Assessment Framework (RPAF) includes guidance for new 6G Radio Access Technologies (RAT). It emphasises that any proposed solutions must be assessed against a reasonable baseline to demonstrate meaningful performance gains.

Editor’s Note:  ITU-R WP5D is the official standards body for 6G, which is known as IMT 2030. Like for 5G (IMT 2020), WP 5D sets the requirements while 3GPP develops the Radio Interface Technology (RIT and SRIT) specs which are then contributed to WP 5D by ATIS.

About the MGMN Alliance:

Next Generation Mobile Networks Alliance – is a global, operator-driven leadership network established in 2006 by leading international mobile network operators (MNOs). Its mission is to ensure that next-generation mobile network infrastructure, service platforms and devices meet operators’ requirements while addressing the demands and expectations of end users.

NGMN’s vision is to provide impactful industry guidance to enable innovative, sustainable and affordable mobile telecommunication services. Key focus areas include Mastering the Route to Disaggregation, Green Future Networks and 6G, while continuing to support the full implementation of 5G.

As a global alliance of nearly 70 companies and organisations—including operators, vendors, and academia—NGMN actively incorporates the perspectives of all stakeholders. It drives global alignment and convergence of technology standards and industry initiatives to avoid fragmentation and support industry scalability.

References:

https://www.ngmn.org/wp-content/uploads/2506_NGMN_6G-Key-Messages_An-Operator-View_V1.0.pdf

NGMN calls for harmonised 6G standards to drive seamless mobile evolution on behalf of global MNOs

NGMN Radio Performance Assessment Framework

NGMN issues ITU-R framework for IMT-2030 vs ITU-R WP5D Timeline for RIT/SRIT Standardization

ITU-R WP 5D reports on: IMT-2030 (“6G”) Minimum Technology Performance Requirements; Evaluation Criteria & Methodology

ITU-R: IMT-2030 (6G) Backgrounder and Envisioned Capabilities

ITU-R WP5D invites IMT-2030 RIT/SRIT contributions

Highlights of 3GPP Stage 1 Workshop on IMT 2030 (6G) Use Cases

https://unidir.org/wp-content/uploads/2024/12/241211_ITU-R-Update-on-WRC-and-IMT-2030.pdf

https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160-0-202311-I%21%21PDF-E.pdf

Draft new ITU-R recommendation (not yet approved): M.[IMT.FRAMEWORK FOR 2030 AND BEYOND]

 

India’s TRAI releases Recommendations on use of Tera Hertz Spectrum for 6G

Telecom Regulatory Authority of India (TRAI is urging the government and wireless network operators to explore the use of terahertz spectrum for new 6G technologies and services.  “The government should introduce a new experimental authorization for the spectrum in the 95 GHz to 3 THz range termed as ‘Tera Hertz Experimental Authorization’ [THEA],” said a press release issued by TRAI.

THEA’s primary objective would be to promote “research and development (R&D), indoor and outdoor testing, technology trial, experimentation and demonstration in the 95 GHz to 3 TZ range,” said TRAI. Any Indian entity, including academic institutes, R&D labs, telecom service providers, central or state government bodies and original equipment makers, will be eligible for an authorization covering a maximum of five years.  The scope of THEA should be to conduct R&D, indoor and outdoor testing, technology trial, experimentation, and demonstration in the 95 GHz to 3 THz range; and to market experimental devices designed to operate in the 95 GHz to 3 THz range via direct sale.

TRAI believes the terahertz frequency band is likely to play a crucial role in upcoming 6G technology. “The high-speed point-to-point wireless data link is an emerging usage of Terahertz radiation,” said TRAI in its recommendations. “For this reason, communications in the Terahertz band are expected to play a pivotal role in the upcoming 6th generation (6G) of wireless mobile communications, enabling ultra-high bandwidth communication paradigms.”

“The large Terahertz bandwidths and massive antenna arrays, combined with the inherent densification caused by machine-type communications, will result in an enhanced communication system performance,” added TRAI. 

“TRAI is laying the groundwork for India to become a global powerhouse in testing as well as in research and development so that we are fully geared to produce cutting-edge technologies and services in the near future,” said TV Ramachandran, the president of the Broadband India Forum (BIF), in his response to the announcement.

The recommendations are a further sign of India’s interest in shaping the 6G standard, likely to appear around 2030. Vocal about its ambitions, India has already set up the Bharat 6G Alliance to actively contribute to 6G activities. It has also collaborated with several organizations, including the US-based Next G Alliance, Europe’s 6G Smart Networks and Services Industry Association (6G IA) and the 6G Flagship of Oulu University as it tries to position itself as a “global leader” in digital infrastructure and innovation. 

The terahertz band has been attracting attention as an option for 6G deployment, with the European Telecommunications Standards Institute (ETSI) recently releasing two reports on the band and the use cases it could support. 

“Due to their shorter wavelengths, Terahertz communication systems can support higher link directionality, are less susceptible to free-space diffraction and inter-antenna interference, can be realized in much smaller footprints, and possess a higher resilience to eavesdropping,” said the TRAI report. Even so, there are several challenges that would need to be addressed before terahertz could be feasible for widespread usage. Above all, signal propagation is generally weak in higher frequency bands and power limitations can also result in poor coverage, said TRAI.

The Recommendations have been placed on the TRAI’s website (www.trai.gov.in). For any clarification! information Shri Akhilesh Kumar Trivedi, Advisor (Networks, Spectrum and Licensing), TRAI may be contacted at Telephone Number +91-11-20907758.

References:

https://www.lightreading.com/6g/india-gets-behind-terahertz-push-for-6g

https://www.trai.gov.in/sites/default/files/PR_No.56of2024.pdf

www.trai.gov.in

KT and LG Electronics to cooperate on 6G technologies and standards, especially full-duplex communications

In a joint statement, KT (South Korea’s #2 mobile network operator) and LG Electronics will work together to promote 6G technology research and technology standardization.  The two companies plan to develop full-duplex communication technology, global standardization cooperation (presumably in 3GPP and ITU-R WP5D for IMT-2030), and 6G application services and next-generation transmission technologies.  The companies had previously announced partnerships to develop AI service platforms and AI service robots.

Full-duplex communications will be introduced as part of the 5G-Advanced Release 18 and is expected to increase spectrum efficiency by enabling uplink and downlink data to be simultaneously transmitted and received over a single frequency band.  The companies said it can increase frequency efficiency by up to two times.  They will design technologies that operate in the 6G candidate frequency bands and transmit and receive simultaneously to verify actual performance. The duo also plan to  promote global standardization of 6G (that can only be done by ITU-R IMT-2030 recommendations).

“Through this 6G research and development collaboration with LG Electronics, KT expects to lead the development of 6G mobile communication technology and strengthen its global standardization leadership,” said Lee Jong-sik, executive director of KT Network Research Institute. “We will do our best to secure innovative network technology and capabilities for providing differentiated services.”

Je Young-ho, executive director of LG Electronics C&M Standard Research Institute added: “LG Electronics has been proactively leading research and development to discover core 6G technologies since 2019,” and added, “Through our collaboration with KT, we expect to contribute greatly to not only leading 6G standardization, but also discovering core services.”

…………………………………………………………………………………………………………………………………………………………………………………………………

Singtel and SK Telecom announced a partnership last month to collaborate on 6G research, including new network slicing capabilities, a fully disaggregated network, and new telco APIs based on Open Gateway.  Earlier this year, Samsung and Arm began conducting joint research into parallel packet processing technology, which it described as one of the ‘key software technologies in next-generation communications’ to accelerate 6G software development, while Nvidia launched its 6G Research Cloud Platform, which includes a a digital twin that can simulate 6G systems, a software-defined, full RAN stack that researchers can play around with the Nvidia Sionna Neural Radio Framework which enables developers to use Nvidia GPUs to generate and capture training data.

…………………………………………………………………………………………………………………………………………………………………………………………………

References:

https://www.koreaittimes.com/news/articleView.html?idxno=133845

https://www.telecoms.com/5g-6g/kt-and-lg-looking-to-take-the-lead-in-6g

KT CEO sets 6G priorities

https://news.koreaherald.com/view.php?ud=20210406000119

https://www.koreatimes.co.kr/www/tech/2024/06/129_334571.html

South Korea government fines mobile carriers $25M for exaggerating 5G speeds; KT says 5G vision not met

South Korea has 30 million 5G users, but did not meet expectations; KT and SKT AI initiatives

Chinese engineers field test a “6G” network with semantic communications on 4G infrastructure

According to the Xinhua news agency, Chinese telecom engineers have established the world’s first field test network for 6G communication and intelligent integration. That’s before 6G is even defined let alone specified by ITU-R WP5D or 3GPP Release 21.  The experimental network has demonstrated that semantic communication [1.] can reach the transmission capabilities of 6G on existing 4G infrastructure.

Note 1. Semantic communication aims at the successful transmission of information conveyed by the source rather than the accurate reception of each single symbol or bit regardless of its meaning.

The network has achieved a remarkable tenfold improvement in key communication metrics, including capacity, coverage and efficiency, according to a team from Beijing University of Posts and Telecommunications who unveiled their work at a seminar on July 10th.  The network serves as a platform which facilitates the efforts of research institutions in conducting theoretical research and initial verification of 6G pivotal technologies. It can effectively lower the entry threshold for 6G research, making it more accessible for innovation, according to the team.

“The integration of the two will accelerate the formation of new business forms of the digital economy,” Professor Zhang Ping, who heads the university’s research team, reportedly said at the conference where the 6G field test network was unveiled. “AI will improve the perception and semantic understanding of communication, while the ubiquitous communication of 6G will in turn extend the reach of artificial intelligence to all corners of all fields,” Zhang was quoted as saying.

Existing 4G and 5G infrastructure has potential to ramp up to 6G, according to the results of a test network. Photo: Shutterstock

China is working to commercialize 6G, the next-generation wireless technology after 5G, by around 2030, the same time at which 6G standards are expected to be completed.  The ITU-R says 6G could promote the growth of a range of advances, allowing communication to be immersive and connectivity universal. But with existing communication technology reaching its theoretical bandwidth limit, there are a series of big problems that have to be overcome. These include the difficulty of increasing capacity, the high cost of coverage, and high energy consumption.

The 6G technology market is also expected to enable major improvements in imaging, presence technology and location awareness. In conjunction with AI, the 6G computing infrastructure should be able to determine the best location for computing, including decisions about data storage, processing and sharing.

References:

https://english.news.cn/20240711/5dd430b4f66141d6a75a7fc505597fb3/c.html

https://www.lightreading.com/6g/china-builds-world-s-first-6g-field-test-network

https://www.scmp.com/news/china/science/article/3270354/could-chinas-intelligent-6g-experiment-signal-way-next-generation-technology

ITU-R: IMT-2030 (6G) Backgrounder and Envisioned Capabilities

ITU-R WP5D invites IMT-2030 RIT/SRIT contributions

NGMN issues ITU-R framework for IMT-2030 vs ITU-R WP5D Timeline for RIT/SRIT Standardization

IMT-2030 Technical Performance Requirements (TPR) from ITU-R WP5D

Highlights of 3GPP Stage 1 Workshop on IMT 2030 (6G) Use Cases

6th Digital China Summit: China to expand its 5G network; 6G R&D via the IMT-2030 (6G) Promotion Group

5G Advanced offers opportunities for new revenue streams; 3GPP specs for 5G FWA?

What is 5G Advanced and is it ready for deployment any time soon?

ITU-R: IMT-2030 (6G) Backgrounder and Envisioned Capabilities

ITU-R vs 3GPP – 5G and 6G Standards and Specifications:

For new IEEE Techblog readers, ITU-R is responsible for radio interfaces with WP 5D making the ITU-R recommendations (standards) for IMT Radio Interface Technologies (RITs) and Set of Radio Interface Technologies (SRITs).

For 5G, it was called IMT 2020 (M.2150 recommendation) and for 6G, it’s called IMT-2030. 3GPP contributions towards those standards have been presented to WP5D by ATIS – one of the organizational partners of 3GPP.

While ITU-T was supposed to standardize non-radio aspects of 5G, 5G Advanced and 6G, that did not happen.  Instead, those specifications, including the 5G and 6G core networks, are being developed by 3GPP.   Those 3GPP 5G and 6G non-radio specs have to be transposed and adopted by official standards bodies, such as ETSI.

Please see References and Comments below for more information.

…………………………………………………………………………………………………….

Backgrounder:

In February 2021, the ITU started the development of ITU-R Framework Recommendation for IMT-2030 (6G) which was approved by the Radio Assembly 2023 and published as Recommendation ITU‑R M.2160 – Framework and overall objectives of the future development of IMT for 2030 and beyond. Based on this Recommendation, the ITU has started the process of the development of IMT-2030. The IMT-2030 terrestrial radio interface specification is expected to be completed in 2030.  M.2160 describes these motivation and societal considerations, potential user and application trends, technology trends, spectrum harmonization and envisaged frequency bands. Also ITU-R Report M.2156 “Future technology trends of terrestrial IMT systems towards 2030 and beyond” and Report ITU-R M.2541 “Technical feasibility of IMT in bands above 100 GHz” details these expected trends and phenomena for IMT-2030.

The framework and objectives including overall timeframes for the future development of IMT for 2030 and beyond are described in some detail in Recommendation ITU-R M.2160.

In order to fulfil these varied demands, Usage scenarios of IMT-2030 are envisioned to expand on those of IMT-2020 (i.e., eMBB, URLLC, and mMTC introduced in Recommendation ITU-R M.2083) into broader use requiring evolved and new capabilities. In addition to expanded IMT‑2020 usage scenarios, IMT-2030 is envisaged to enable new usage scenarios arising from capabilities, such as artificial intelligence and sensing, which previous generations of IMT were not designed to support. Figure 1. below illustrates the usage scenarios for IMT-2030.

Figure 1. Usage scenarios and overarching aspects of IMT-2030:

Capabilities of IMT-2030:

IMT-2030 is expected to provide enhanced capabilities compared to those described for IMT-2020 in Recommendation ITU-R M.2083, as well as new capabilities to support the expanded usage scenarios of IMT-2030. In addition, each capability could have different relevance and applicability in the different usage scenarios.

The range of values given for capabilities are estimated targets for research and investigation of IMT-2030. All values in the range have equal priority in research and investigation. For each usage scenario, a single or multiple values within the range would be developed in future in other ITU-R Recommendations/Reports. These values may further depend on certain parameters and assumptions including, but not limited to, frequency range, bandwidth, and deployment scenario. Further these values for the capabilities apply only to some of the usage scenarios and may not be reached simultaneously in a specific usage scenario.

The capabilities of IMT-2030 include:

1)                Peak data rate

Maximum achievable data rate under ideal conditions per device.  The research target of peak data rate would be greater than that of IMT-2020. Values of 50, 100, 200 Gbit/s are given as possible examples applicable for specific scenarios, while other values may also be considered.

2)                User experienced data rate

Achievable data rate that is available ubiquitously[1] across the coverage area to a mobile device. The research target of user experienced data rate would be greater than that of IMT-2020. Values of 300 Mbit/s and 500 Mbit/s are given as possible examples, while other values greater than these examples may also be explored and considered accordingly.

3)                Spectrum efficiency

Spectrum efficiency refers to average data throughput per unit of spectrum resource and per cell[2]. The research target of spectrum efficiency would be greater than that of IMT-2020. Values of 1.5 and 3 times greater than that of IMT-2020 could be a possible example, while other values greater than these examples may also be explored and considered accordingly.

4)                Area traffic capacity

Total traffic throughput served per geographic area. The research target of area traffic capacity would be greater than that of IMT-2020. Values of 30 Mbit/s/m2 and 50 Mbit/s/m2 are given as possible examples, while other values greater than these examples may also be explored and considered accordingly.

5)                Connection Density

Total number of connected and/or accessible devices per unit area.  The research target of connection density could be 106 – 108 devices/km2.

6)                Mobility

Maximum speed, at which a defined QoS and seamless transfer between radio nodes which may belong to different layers and/or radio access technologies (multi-layer/multi-RAT) can be achieved. The research target of mobility could be 500 – 1 000 km/h.

7)                Latency

Latency over the air interface refers to the contribution by the radio network to the time from when the source sends a packet of a certain size to when the destination receives it.  The research target of latency (over the air interface) could be 0.1 – 1 ms.

8)                Reliability

Reliability over the air interface relates to the capability of transmitting successfully a predefined amount of data within a predetermined time duration with a given probability.

The research target of reliability (over the air interface) could range from 1-10−5 to 1-10−7.

9)                Coverage

Coverage refers to the ability to provide access to communication services for users in a desired service area. In the context of this capability, coverage is defined as the cell edge distance of a single cell through link budget analysis.

10)              Positioning

Positioning is the ability to calculate the approximate position of connected devices. Positioning accuracy is defined as the difference between the calculated horizontal/vertical position and the actual horizontal/vertical position of a device.

The research target of the positioning accuracy could be 1 – 10 cm.

11)              Sensing-related capabilities

Sensing-related capabilities refer to the ability to provide functionalities in the radio interface including range/velocity/angle estimation, object detection, localization, imaging, mapping, etc. These capabilities could be measured in terms of accuracy, resolution, detection rate, false alarm rate, etc.

12)              Applicable AI-related capabilities

Applicable AI-related capabilities refer to the ability to provide certain functionalities throughout IMT-2030 to support AI enabled applications. These functionalities include, distributed data processing, distributed learning, AI computing, AI model execution, and AI model inference, etc.

13)              Security and resilience

In the context of IMT-2030:

−                 Security refers to preservation of confidentiality, integrity, and availability of information, such as user data and signalling, and protection of networks, devices and systems against cyberattacks such as hacking, distributed denial of service, man in the middle attacks, etc.

−                 Resilience refers to capabilities of the networks and systems to continue operating correctly during and after a natural or man-made disturbance, such as the loss of primary source of power, etc.

14)              Sustainability

Sustainability, or more specifically environmental sustainability, refers to the ability of both the network and devices to minimize greenhouse gas emissions and other environmental impacts throughout their life cycle. Important factors include improving energy efficiency, minimizing energy consumption and the use of resources, for example by optimizing for equipment longevity, repair, reuse and recycling.

Energy efficiency is a quantifiable metric of sustainability. It refers to the quantity of information bits transmitted or received, per unit of energy consumption (in bit/Joule). Energy efficiency is expected to be improved appropriately with the capacity increase in order to minimize overall power consumption.

15)              Interoperability

Interoperability refers to the radio interface being based on member-inclusivity and transparency, so as to enable functionality(ies) between different entities of the system. The capabilities of IMT-2030 are shown in Figure 2. below.

FIGURE 2. Capabilities of IMT-2030:

NOTES:

[1]   The term “ubiquitous” is related to the considered target coverage area and is not intended to relate to an entire region or country.

[2] The coverage area over which a mobile terminal can maintain a connection with one or more units of radio equipment located within that area. For an individual base station, this is the coverage area of the base station or of a subsystem (e.g., sector antenna).

Relationship between existing IMT and IMT-2030:

In order to support emerging usage scenarios and applications for 2030 and beyond, it is foreseen that development of IMT-2030 would be required to offer enhanced capabilities as described in § 3. The values of these capabilities go beyond those described in Recommendation ITU-R M.2083. The minimum technical requirements (and corresponding evaluation criteria) are to be defined by ITU‑R based on these capabilities for IMT-2030. They could potentially be met by adding enhancements to existing IMT, incorporating new technology components and functionalities, and/or the development of new radio interface technologies. Furthermore, IMT-2030 is envisaged to interwork with existing IMT.

……………………………………………………………………………………………………………….

Separately, ATIS’ Next G Alliance (NGA) recently announced publication of Spectrum Needs for 6G, which assesses 6G spectrum needs based on scenario-specific key performance indicators and application-specific technical performance requirements.

The methodology used for estimating spectrum needs is based on the data rate requirements of 6G applications, with an emphasis on North American context and needs. The applications considered reflect the NGA’s collective efforts in establishing a comprehensive 6G roadmap.

“Proactively understanding next G spectrum needs and planning for them is essential to U.S. leadership in critical and emerging technologies,” said Next G Alliance Managing Director, David Young. “Decisions about the use of spectrum depend on multiple aspects and require time to be implemented. This paper achieves an understanding of 6G spectrum needs so that these needs are considered in the development of data-driven policies, regulatory decisions, and technical solutions.”

References:

https://www.itu.int/en/mediacentre/Pages/PR-2023-12-01-IMT-2030-for-6G-mobile-technologies.aspx

https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx

Highlights of 3GPP Stage 1 Workshop on IMT 2030 (6G) Use Cases

ITU-R WP5D invites IMT-2030 RIT/SRIT contributions

IMT-2030 Technical Performance Requirements (TPR) from ITU-R WP5D

ATIS’ Next G Alliance Maps the Spectrum Needs for the 6G Future

NGMN issues ITU-R framework for IMT-2030 vs ITU-R WP5D Timeline for RIT/SRIT Standardization

Draft new ITU-R recommendation (not yet approved): M.[IMT.FRAMEWORK FOR 2030 AND BEYOND]

 

 

 

Highlights of 3GPP Stage 1 Workshop on IMT 2030 (6G) Use Cases

This 3GPP May 8-10,2024 workshop held in Rotterdam, Nederlands brought the 3GPP community closer to the initiatives of regional and global research organizations, market partners (MRPs), operators’ associations and the ITU.

The workshop presented the opportunity for different communities to share their views on 6G/IMT2030 Use Cases. Those communities are Operators; Verticals; Regional Alliances and ITU.

The workshop was co-chaired by Mr. Jose Almodovar, SA1 Chair, and by Mr. Puneet Jain, SA Chair. It was supported by ETSI MCC, coordinated by Mr. Alain Sultan.

3GPP WG SA1 now has the task to define the 6G stage 1 requirements to be met by future 3GPP specifications.

Among the more important sessions were:

Day 1: Opening, Operators, Verticals

Speakers: Puneet Jain (Intel), SA Chair and Jose Almodovar (TNO), SA1 Chair


Operators:

Panel#1: “6G Drivers for Operators”

Moderator: Balazs Bertenyi (Nokia)
Panellists: Scott Migaldi (T-Mobile USA), Eric Hardouin (Orange), Xu Xiaodong (CMCC), Minsoo Na (SK Telecom), Shin-Ichi Isobe (NTT DoCoMo)

Panel#2 :  “6G Drivers for Verticals” 

Moderator: Toon Norp (KPN), former SA1 Chair
Panellists: Maxime Flament (5GAA), Andreas Müller (Bosch), Jordi Gimenez (5G-MAG), Nicolas Chuberre (Thales), Tero Pesonen (TCCA), Bruno Tomas (WBA)

 

Panel #2

Potential Drivers for 6G include:

•Security. Used in different contexts, both about network security and user data confidentiality (interesting to note that 5G Security is not widely deployed. It requires a 5G SA network few of which are commercially available).

• Maintaining continuity of service and robust security, especially crucial in times of crisis

• Identify all relevant new threat-factors for 6G, and develop mitigation solution (e.g. detection and protection against electromagnetic threats)

• Quantum-safe security mechanisms

• Network-design/performance: network optimization and automation (Intelligent Network management, Network Performance)

• Energy efficiency/saving/ sustainability

• AI-assisted air interface/ Radio Performance

• AI for improving positioning

• Enabling AI at the application level

• AI data management, model distribution for all AI-assisted “smart” areas (cities, industries, surgeries, robot control, manufacturing plant, rescue missions etc.

• AI as a Service (AIaaS)

• To implement a range of media’s personalization and customization (sport TV program, etc)


ITU & 3GPP:

Panel#4: ITU & 3GPP synergies for 6G

Moderator: Giovanni Romano (Novamint), ITU/3GPP liaison officer
Panellists: Hiroyuki Atarashi (NTT DOCOMO), ITU-R WP 5D Chair, Puneet Jain (3GPP SA Chair – Intel), Peter Schmitt (3GPP CT Chair – Huawei), Wanshi Chen (3GPP RAN Chair – Qualcomm), Jose Almodovar (SA1 Chair – TNO)

Closing:

Speakers: Puneet Jain (Intel), SA Chair; Jose Almodovar (TNO), SA1 Chair; Alain Sultan (ETSI MCC), SA1 Secretary & 3GPP Work Plan Coordinator

…………………………………………………………………………………………………………..

References:

https://www.3gpp.org/component/content/article/stage1-imt2030-uc-ws?catid=67&Itemid=101

https://www.3gpp.org/ftp/workshop/2024-05-08_3GPP_Stage1_IMT2030_UC_WS/Docs

https://www.3gpp.org/ftp/workshop/2024-05-08_3GPP_Stage1_IMT2030_UC_WS

NGMN issues ITU-R framework for IMT-2030 vs ITU-R WP5D Timeline for RIT/SRIT Standardization

IMT-2030 Technical Performance Requirements (TPR) from ITU-R WP5D

Juniper Research: Global 6G Connections to be 290M in 1st 2 years of service, but network interference problem looms large

Draft new ITU-R recommendation (not yet approved): M.[IMT.FRAMEWORK FOR 2030 AND BEYOND]

New ETSI Reports: 1.] Use cases for THz communications & 2.] Frequency bands of interest in the sub-THz and THz range

SK Telecom, DOCOMO, NTT and Nokia develop 6G AI-native air interface

Ericsson and IIT Kharagpur partner for joint research in AI and 6G

SK Telecom, Intel develop low-latency technology for 6G core network

ETSI Integrated Sensing and Communications ISG targets 6G

IEEE 5G/6G Innovation Testbed for developers, researchers and entrepreneurs

 

 

GSMA: China’s 5G market set to top 1 billion this year

China’s state sponsored 5G market is expected to add almost US$260 billion to its gross domestic product in 2030, with its 5G connections accounting for nearly a third of the worldwide total according to a recent GSMA report.

The report forecasts that more than half of Chinese mobile connections will be 5G by the end of 2024. 5G’s contribution to GDP in China is expected to reach almost $260 billion in 2030, which is 23% of the overall annual economic impact of mobile in China. Also by 2030, 5G connections in China will account for nearly a third of the global total, with 5G adoption in China reaching almost 90%, making it one of the leading markets globally.

The mobile industry contributed to 5.5% of China’s GDP last year, and in each of the coming years through 2030, nearly a quarter of that contribution will come from 5G – the highest echelon of current cellular technology – per the results of a study issued on Tuesday by the Group System for Mobile communications Association (GSMA).

Overall, the mobile market’s contribution to the Chinese economy will reach around US$1.1 trillion in 2030, GSMA said.  Mats Granryd, Director General of the GSMA, said:

“It is great to see China, the world’s largest 5G market, commit so enthusiastically to the GSMA’s Open Gateway initiative to help drive the growth and maturity of the technology. As China surpasses 1 billion 5G connections this year, we expect to see further investment and potential in evolutions such as 5G-Advanced, 5G New Calling and 5G RedCap to improve user experience and unlock new revenue streams for operators.”

Photo credit: Shutterstock

GSMA’s Mobile Economy China 2024 report said the country’s entire mobile sector has so far provided a total of nearly 8 million jobs directly and indirectly, and generated US$110 billion in tax revenue in 2023 alone.  According to that report:

  • There are now 1.28 billion unique mobile subscribers in China – a penetration rate of 88%
  • Mobile’s overall contribution to the Chinese economy in 2023 reached $970 billion, or 5.5% of GDP
  • 5G is expected to reach 1.6bn connections in 2030, representing a third of the world’s total, and forecast to contribute $260 billion to China’s GDP
  • An additional 290 million people in China now use mobile internet compared to eight years ago (2015), closing the country’s Usage Gap from 43% to just 16%
  • Mobile data traffic in China is expected to quadruple by the end of the decade
5G adoption in China “is growing faster than anticipated due to the speed of network deployments and a maturing device ecosystem,” the GSMA reported.

China has the world’s most mobile phone users by a wide margin. As of the end of last year, there were 122.5 mobile phones for every 100 people, according to figures from the National Bureau of Statistics.  The number of 5G base stations was nearly 3.38 million – a surge of 46% from a year earlier.

“China continues to set the pace for cutting-edge 5G technology standards,”the GSMA said, adding the country’s operators are “leading the way in the transition to 5G-advanced and 5G reduced capability networks. This is anticipated to kick-start a new round of 5G investment in 2024 and beyond.”

China is also investing heavily in research and development for the next generation of mobile technology, part of a global race to deploy a 6G network.  China Mobile, the world’s largest telecoms operator in terms of mobile subscribers, announced last month that it successfully launched the world’s first satellite to test 6G architecture.
References:

Ericsson and IIT Kharagpur partner for joint research in AI and 6G

Ericsson and the Indian Institute of Technology (IIT) Kharagpur have announced a partnership for a long-term cooperation for joint research in the area of radio, computing and AI (artificial intelligence). Both organisations have signed two milestone agreements. As part of the agreements, researchers from IIT Kharagpur and Ericsson will collaborate to develop novel AI and distributed compute tech for 6G. Leaders from IIT Kharagpur and Ericsson participated in discussing the developments and advancements for the future of networks and communications at the GS Sanyal School Telecommunications (GSSST).

Ericsson members from left: Rupa Deshmukh, Mikael Prtz, Kaushik Dey, Mikael Hook, Bo Hagerman,Magnus Frodigh, Director – Prof V. k Tewari, Deputy Director – Prof Amit Patra, Anil R Nair

……………………………………………………………………………………………………….

Two key initiatives finalized by Ericsson and IIT were:

a) Compute offload and Resource Optimisation at edge compute: The project aims to explore resource optimization, dynamic observability and sustainable distributed and Edge computing technologies.

b) RL-based Beamforming for JCAS: Safe, Causal, and Verifiable: The project aims to explore causal AI methods for joint communication and sensing (JCAS).

…………………………………………………………………………………………………………….

AI and Compute Research is instrumental to Ericsson’s 6G networks as the compute offload needs to be managed dynamically at edge and the policies would primarily be driven by AI. These themes of research are well aligned with IIT Kharagpur and both organizations view this partnership as a way to push the boundaries of fundamental and applied research in the Radio domain.

Editor’s Note:

Ericsson laid off 8,500 employees last year as part of its cost-cutting initiatives and reduced total costs by 12 billion Swedish crowns ($1.15 billion) in 2023.

Telecoms equipment suppliers are expecting a challenging 2024 as 5G equipment sales – a key source of revenue – are slowing in North America, while India, a growth market, may also see a slowdown. Ericsson’s fourth-quarter net sales fell 16% to 71.9 billion Swedish crowns ($6.89 billion), missing estimates of 76.64 billion.

……………………………………………………………………………………………………………..

Magnus Frodigh, Head of Ericsson Research, says: “This collaboration strengthens our R&D commitments in India and is pivotal to Radio, Compute and AI research. We are excited to partner with IIT Kharagpur and look forward to collaborative research in fundamental areas as well as translational research for our Future Network Platforms”. Dr Frodigh also presented Ericsson’s vision on 6G which aims to blend the physical and digital worlds enabling us to improve the quality of life by incorporating widespread Sensor-based communications between humans and machines through digital twins.

Nitin Bansal, Managing Director of Ericsson India said, “Ericsson is well poised to lead 6G innovation and we are making significant R&D investments in India in line with our commitment to the country. Given our 5G and technology leadership, our research initiatives are geared to provide affordable network platforms for ubiquitous connectivity all across the country.”

Virendra Kumar, Director at IIT Kharagpur, said, “In the commitment towards Digital India and making India the hub of technological innovation, this collaboration with Ericsson will be effective for next-generation technology significantly. 6G networks integrated with artificial intelligence will enable AI-powered applications to run faster and more efficiently. In the 6G era, IIT Kharagpur aims to contribute to Radio Access Technology and Network, Core Network, RF & Device Technologies, VLSI Design, Neuromorphic Signal Processing, Services and Applications.”

About Ericsson;
Ericsson enables communications service providers to capture the full value of connectivity. The company’s portfolio spans Networks, Digital Services, Managed Services, and Emerging Business and is designed to help our customers go digital, increase efficiency and find new revenue streams. Ericsson’s investments in innovation have delivered the benefits of telephony and mobile broadband to billions of people around the world. The Ericsson stock is listed on Nasdaq Stockholm and on Nasdaq New York. www.ericsson.com

About IIT Kharagpur:

Indian Institute of Technology Kharagpur (IIT KGP) is a higher educational and academic institute, known globally for nurturing industry ready professionals for the world and is a pioneer institution to provide Excellence in Education, producing affordable technology innovations. Set up in 1951 in a detention camp as an Institute of National Importance, the Institute ranks among the top five institutes in India and is awarded, “The Institute of Eminence”, by the Govt. of India in 2019. The Institute is engaged in several international and national mission projects and ranks significantly in research output with about 20 academic departments, 12 schools, 18 centers (including 10 Centre of Excellence) and 2 academies with vast tree-laden campus, spreading over 2100 acres having 16,000+ students. Currently, it has about 750+ faculty, 850+ employees and 1240+ projects.

To know more visit: [http://www.iitkgp.ac.in/]

https://www.ericsson.com/en/press-releases/2/2024/2/ericsson-and-iit-kharagpur-partner-for-joint-research-in-ai-and-edge-compute

Ericsson, IIT Kharagpur Partner to Joint Research in AI and 6G

Nokia plans to investment €360 million in microelectronics & 5G Advanced/6G technology in Germany

Nokia plans to invest €360 million (US$391 million) on the development of energy-efficient software, hardware and high-performance microelectronics for use in future mobile communications systems based on future 5G-Advanced and 6G specs from 3GPP and ITU-R standards.

Nokia wrote that “3GPP Release 18 will mark another major evolution in 5G technology that will lead the industry into the 5G-Advanced era. 5G-Advanced is set to evolve 5G to its fullest, richest capabilities. It will create a foundation for more demanding applications and a wider range of use cases than ever before with a truly immersive user experience based on extended reality (XR) features. It will also introduce AI and ML enhancements across the RAN, Core, and network management layer for improved performance, network optimization, and energy efficiency.”

Source: Nokia

…………………………………………………………………………………………………………………………

Editors Note:  3GPP Release 18 is scheduled to be completed in June 2024

Source: 3GPP

……………………………………………………………………………………………………………………

The project will focus on the integrated development of software, hardware and high-performance systems-on-chips based on a digital twin. These will be used in radio and optical products in future mobile communications systems based on the 5G-Advanced and 6G standards. Nokia is further expanding its extensive experience in chip design and strengthening the European value chain.

This development work will be carried out at Nokia’s Ulm and Nuremberg sites in Germany, and will be funded by Nokia, the German Federal Ministry of Economics and Climate Protection and the German states of Baden-Württemberg and Bavaria.

Another focus area is on the energy efficiency of the systems to support European climate targets under the Green Deal. Nokia is closely cooperating with research institutes and universities to achieve this objective.This cooperation will be strengthened by the long-term IPCEI investment and funding.  The microelectronics systems developed as part of the project will help to make networks more energy-efficient and more powerful at the same time.

Nokia hopes that the project will strengthen Europe’s competitiveness, especially in the field of microelectronics for nascent technologies such as 6G and artificial intelligence.

Tommi Uitto, President of Mobile Networks at Nokia, said:

“This important funding will support our efforts to advance the telecommunications industry in Germany and in Europe, helping to drive innovation and strengthen competitiveness. In particular, it will help our research into microelectronics that will power future technologies such as 6G, artificial intelligence and the metaverse as well as develop networks that are more energy-efficient and powerful. Germany is an important market for Nokia, and we look forward to working with the government to produce cutting-edge technology that is ‘Made in Germany’.”

References:

https://www.nokia.com/about-us/news/releases/2024/01/17/nokia-plans-eu360-million-investment-in-microelectronics-and-communications-technology-in-germany/

https://www.nokia.com/about-us/newsroom/articles/5g-advanced-explained/

https://www.3gpp.org/specifications-technologies/releases/release-18

Nokia exec talks up “5G Advanced” (3GPP release 18) before 5G standards/specs have been completed

Nokia and du (UAE) complete 5G-Advanced RedCap trial

ZTE and China Telecom unveil 5G-Advanced solution for B2B and B2C services

ABI Research: 5G-Advanced (not yet defined by ITU-R) will include AI/ML and network energy savings

Nokia will manufacture broadband network electronics in U.S. for BEAD program

ETSI Integrated Sensing and Communications ISG targets 6G

The new ETSI Industry Specification Group for Integrated Sensing and Communications (ISG ISAC). This group will establish the technical foundations for ISAC technology development and standardization of 6G.

87 participants from both the industrial sphere and the academic sphere took an active part in the kick-off meeting, which was held at ETSI premises in Sophia Antipolis, France, on 17 November 2023.

“Integrated Sensing and Communications add a new element of capability to the wireless network, enabling new innovative use cases in transport, urban environments, homes, and factories, ranging from object and intruder detection in predefined secure areas around critical infrastructures to fall detection and rain/pollution monitoring” explains Dr. Alain Mourad, Chair of the ISAC ISG.

The ETSI ISAC ISG’s mission is to enable ETSI members to coordinate their 6G pre-standard research efforts on ISAC, particularly across various European/National-funded collaborative projects, extended through relevant global initiatives, paving the way for the 6G standardization of the technology.

The ISG will target systematic outputs on ISAC into international standards organizations, namely future 3GPP 6G releases (e.g., R20+) and ITU-R IMT-2030 deliverables, related to ISAC requirements and evaluation methodologies.

Within this context, sensing refers to the use of radio signals to detect and estimate characteristics of target objects in the environment. By integrating sensing into the communications network, the network acts as a “radar” sensor, using its own radio signals to sense and comprehend the physical world in which it operates. This allows the network to collect data on the range, velocity, position, orientation, size, shape, image, materials of objects and devices.

The sensing data collected and processed by the network can then be leveraged to enhance the network’s own operations, augment existing services such as XR and digital twinning, and enable new services, such as gesture and activity recognition, object detection and tracking, along with imaging and environment reconstruction.

The ETSI ISAC ISG will define a prioritized set of 6G use cases and sensing types, along with a roadmap for their analysis and evaluation. It will focus on advanced 6G use cases and sensing types which are not expected to be covered by 3GPP Release 19. These advancements may potentially be included in future 6G releases of 3GPP. The group also aims to develop advanced channel models for ISAC use cases and sensing types, with validation through extensive measurement campaigns, addressing gaps in existing communications-based channel models (e.g., 3GPP, IEEE 802. ITU-R).

Output for architectures and deployment considerations, KPIs, and evaluation assumptions will also be provided. In parallel, the group will undertake two studies, with a first analysis of the privacy and security aspects associated with sensing data within the ISAC 6G framework, and a second analysis of the impact of widespread deployment of ISAC on the UN sustainable development goals. To get involved with this new activity, please contact [email protected]

………………………………………………………………………………………………………………………

The idea of using a network to sense objects was also offered up by Nokia at MWC this year as a potential 6G use case. Head of Europe Rolf Werner told Telecoms.com:

“Temperature, wavelength, infrared, you can do stuff which goes all around. You can tune an airport [so you] don’t have to show a passport… you walk through because the network is able to gain information from everything you have… there’s a lot of stuff coming around. 6G in 2030 is our visionary year, or that’s when we think it will kick in. Of course a lot of things have to happen before that.”

ETSI’s ISG ISAC group will be producing a study around the privacy and security aspects around sensing which seems prudent, since there are bound to be some concerns raised about the potential implications of a network sensing all sorts of data points on people and objects if that becomes a key facet of the future 6G marketing machine.

About ETSI:

ETSI provides members with an open and inclusive environment to support the development, ratification, and testing of globally applicable standards for ICT systems and services across all sectors of industry and society. We are a non-profit body, with more than 900 member organizations worldwide, drawn from over 60 countries and five continents. Our members constitute a diverse pool of large and small private companies, research entities, academia, government, and public organizations. ETSI is officially recognized by the EU as a European Standardization Organization (ESO).

For more information, please visit us at https://www.etsi.org/

References:

https://www.etsi.org/newsroom/press-releases/2291-etsi-launches-a-new-group-for-integrated-sensing-and-communications-a-candidate-technology-for-6g

https://telecoms.com/524926/etsi-offers-up-integrated-sensing-and-communications-as-6g-selling-point/

ETSI NFV evolution, containers, kubernetes, and cloud-native virtualization initiatives

ETSI Telemetry Standard for Optical Access Networks to enhance FTTP QoE

ETSI Experiential Networked Intelligence – Release 2 Explained

Multi-access Edge Computing (MEC) Market, Applications and ETSI MEC Standard-Part I

ETSI MEC Standard Explained – Part II

ETSI DECT-2020 approved by ITU-R WP5D for next revision of ITU-R M.2150 (IMT 2020)

SK Telecom, Samsung, HPE and Intel MOU for 5G NFV Technology Evolution; ETSI ISG-NFV?

 

 

Page 1 of 4
1 2 3 4