Busting a Myth: 3GPP Roadmap to true 5G (IMT 2020) vs AT&T “standards-based 5G” in Austin, TX

TRUTH about 3rd Generation Partnership Project (3GPP) and the path to 5G Standards:

3GPP is a very honest, focused and effective engineering organization that develops technical specifications – not standards.  Not once has 3GPP contributed to the hype and spin embedded in  “5G” propaganda and fake news.  It is the 3GPP  member companies, service providers, and the press that’s guilty of that disinformation campaign.

From the 3GPP website under the heading Official Publications:

The 3GPP Technical Specifications and Technical Reports have, in themselves, no legal standing. They only become “official” when transposed into corresponding publications of the Partner Organizations (or the national / regional standards body acting as publisher for the Partner). At this point, the specifications are referred to as UMTS within ETSI and FOMA within ARIB/TTC.

Some TRs (mainly those with numbers of the form xx.8xx) are not intended for publication, but are retained as internal working documents of 3GPP. Once a Release is frozen (see definition in 3GPP TR 21.900), its specifications are published by the Partners.

All of the above and more were explained in this blog post, but apparently no one paid any attention as the claims of being complaint with “3GPP standards” abound.  Here are two from AT&T:

1.  After the 3GPP New Radio (NR) description/specification was completed in 3GPP Release 15:

“We’re proud to see the completion of this set of standards. Reaching this milestone enables the next phase of equipment availability and movement to interoperability testing and early 5G availability,” said Hank Kafka, VP Access Architecture and Analytics at AT&T. “It showcases the dedication and leadership of the industry participants in 3GPP to follow through on accelerating standards to allow for faster technology deployments,” he added.

2. In AT&Ts recent FCC application for an experimental radio license in Austin, TX, which is in this FCC filing:

3GPP has developed 5G standards that became available in 2018.”

That statement was echoed in a Light Reading blog post titled: AT&T to Show Off Standards-Based 5G in Austin.

My rebuttal in an email to AT&T executives included this paragraph:

As you should be very well aware, 3GPP specifications have no official status and are not standards (as per their website).  More importantly, 3GPPs “final 5G” spec will be in release 16 which won’t be completed till July 2019.  Release 16 and parts of Release 15 will then be submitted for consideration as an IMT 2020 Radio Interface Technology (RIT) at the July 2019 ITU-R WP5D meeting- the first meeting which will evaluate IMT 2020 RIT/SRITs.  All this info on much more is available at the 3GPP website with no log in required for access!
…………………………………………………………………………………………………………………………………………………………………………

Here’s the actual status of 3GPP specs directed at 5G standards (IMT 2020) from 3GPP’s Submission of initial 5G description for IMT-2020:

IMT submissions

This document December 2017 version of 3GPP Release 15) is the first of three planned steps spanning two releases from 3GPP, following the decision to submit preliminary descriptions of the solution only when milestones of high relevance are achieved:

  • Release 15 December 2017 version;
  • Release 15 June 2018 version and
  • Release 16  (scheduled for July 2019)

The final and fully comprehensive 3GPP IMT-2020 submission (encompassing both Release 15 and Release 16) for IMT 2020 is planned for July 2019.

To help the Evaluation Groups in their work, 3GPP is currently planning a workshop to present the 5G solutions to interested external bodies – specifically the Evaluation Groups – to allow a better understanding of the 3GPP technologies for 5G.

3GPP has agreed to organize a Workshop on 3GPP submission towards IMT-2020in October 2018. Some details are provided below:
•           Dates/Location:
–     October 24-25th, 2018;
–     Location: Brussels (European Commission facilities).
•           Target audience:
–     Independent Evaluation Groups, Regulators, Administrations, Industry Sectors interested in using 3GPP technologies.
•           Scope:
–     Present/describe the 3GPP IMT-2020 submission proposal
•           High level agenda/topics:
–     Specific technical features of the “5G” proposal
–     Submission templates
–     Self-Evaluation assumptions/results
–     Anticipations on the final submission with Rel. 15 and Rel. 16 contents
–     Overview of System Aspects

Here’s a free 3GPP webinar where you can get more information:

http://www.3gpp.org/news-events/3gpp-news/1966-webinar2_ran

As we’ve repeatedly stated, ITU-R WP 5D is the official standards organization for IMT 2020 (5G mobile).  They will evaluate RIT/SRIT submissions at their July 2019 meeting.  To date, 3GPP, South Korea, China, ETSI/DECT Forum, and TDSI have all indicated their intent to submit detailed RIT/SRIT proposals at the July 2019 ITU-R WP 5D meeting.

…………………………………………………………………………………………………………………………………………………………………………

AT&T to test “standards based 5G” at the Austin, TX Convention Center:

The FCC has just granted AT&T an experimental radio license to test what the mega carrier calls “standards-based 5G” in the convention center in Austin, Texas.  The test will begin at the end of July.   AT&T will run “up to 3” 28GHz fixed base stations in the convention center with connections to “up to 6” compatible user devices at up to 100 meters. AT&T promises demonstrations of 4K TV, volumetric video and eSports, as well mobile gaming, over the air, and more.

Indeed, Austin has been a hotbed for AT&T’s 5G developments. In February, the company announced plans to open a new 5G lab there. One of the first in-house projects built at the lab is the Advanced 5G NR Testbed System (ANTS), which AT&T describes as a first-of-its kind 5G testbed system that is proprietary to AT&T.

AT&T said in January 2018 that it plans to launch 3GPP release 15 based mobile 5G in up to 12 markets by the end of the year.  The mega carrier (and now via Time Warner acquisition an entertainment content company) has been using special events around the country to showcase its 5G technology.

In early June, AT&T staged its Shape conference at Time Warner’s Warner Bros. Studios in Burbank, California, where it showed presentations on edge technologies, artificial intelligence and immersive entertainment, as well as a 5G demonstration with Ericsson and Intel.

At the Electronic Entertainment Expo (E3) in Los Angeles, AT&T conducted a 28 GHz demo to give gamers an up-close look at how a 5G connection can give them a live gaming experience virtually anywhere there’s network coverage. That demo also involved Ericsson, Intel and ESL.

Also in June, there was the 2018 5G demo at the  U.S. Open, which took place at the Shinnecock Hills Golf Club in Tuckahoe, New York. Ericsson, Intel and Fox Sports were also participated in that demo.

………………………………………………………………………………………………………………………

Here are a few recent IEEE techblog posts related to AT&T’s 5G initiatives:
………………………………………………………………………………………………………………………………………………………………………………………..

Apple asks FCC for “light touch” as it explores 95GHz to 3,000GHz wireless options

Executive Summary:

Apple has written to the Federal Communications Commission (FCC) asking the agency to leave certain frequencies unlicensed or shared as it tests 95 GHz to 3,000 GHz wireless technology. A major part of this “5G” testing is working on millimeter wave radio spectrum, which was traditionally reserved for larger devices, such as radars, satellites and airport security scanners.  One year ago, we wrote that Apple would be testing millimeter wave technology in controlled facilities in Cupertino and Milpitas, California.  This is a follow up to that blog post

…………………………………………………………………………………………………………

NOTE that millimeter wave spectrum has yet to be added to the IMT 2020 permitted frequencies.  Here’s the current status and future direction for IMT 2020 and “5G” spectrum:

The World Radiocommunication Conference 2015 (WRC-15) paved the way for the future development of IMT on higher frequency bands by identifying several frequencies for study within the 24.25-86 GHz range for possible identification for IMT under Agenda Item 1.13 of WRC-19 (see below).

The 24.25-27.5 and 37-43.5 GHz bands are prioritized within the ongoing ITU-R work in preparation for WRC-19 agenda item 1.13.  All geographical regions and countries are recommended to support the identification of these two bands for IMT during WRC-19 and should aim to harmonise technical conditions for use of these frequencies in 5G.

The frequency band of 27.5-29.5 GHz, though not included in the WRC-19 Agenda Item 1.13, is being considered for “5G” in the USA, South Korea and Japan, according to Huawei.

The first solid list of IMT 2020 frequencies will be set at the WRC-19 – World Radio Conference meeting- 28 October to 22 November 2019 in Sharm El Sheikh, Egypt.

To date, the most definitive document approved by ITU-R for IMT 2020 has been: Minimum requirements related to technical performance for IMT-2020 radio interface(s)

…………………………………………………………………………………………………………..

Backgrounder:

Until recently, consumer products did not use millimeter wave radio spectrum, which the FCC allocated to large devices such as satellites, radars, and airport security scanners. Over time, however, technology companies found that the millimeter wave spectrum could be used to radically improve mobile devices’ data speeds.

Starting this year, “5G” fixed broadband access products (which have nothing to do with the forthcoming IMT 2020 standard for real “5G”) will begin to use radios operating in the 24GHz to 29GHz range, radically increasing data bandwidth over short distances.  Non-cellular wireless technologies such as next-generation Wi-Fi or Bluetooth could conceivably occupy other frequencies.

Details:

In a recent letter to the FCC,  Apple requested the agency to leave substantial portions of the ultra-high-frequency radio spectrum unlicensed or shared — a so called “light touch” to “5G” regulation.  That suggests the iPhone king is already considering potential applications of 95GHz to 3,000GHz wireless technology,

The Apple-FCC letter is focused on even higher-frequency spectrum. Specifically, the company says that the commission needs to avoid making the mistakes of prematurely or narrowly licensing radio frequencies above 95GHz, as researchers are already looking at 120GHz to 260GHz and 275GHz to 450GHz ranges for “high-speed, short range” purposes. The concern is that the FCC will sell licenses to small stripes of spectrum now, then have to claw them back later once technology companies determine their best uses — a situation that just played out with 5G millimeter wave licenses, with billions of dollars in consequences.

“Apple supports the Commission’s proposal for experimental licensing in the bands above 95 GHz and believes that adopting this flexible model will help to spur innovation in the band,” the company said in a May 2 letter, signed by Mark Neumann, a senior engineer at Apple.

“As the band is still largely greenfield, this is a rare opportunity to allow for freedom of exploration that does not exist in other bands and advantage should be taken,” Apple continued.

Apple told the FCC it favored a “light regulatory touch” that would leave a greater share of the spectrum unlicensed, and open for anyone to use.  Apple’s comments were in response to the FCC’s request seeking comments on how to regulate the high-bandwidth wireless spectrum, often referred to as “super high” spectrum. Apple believes that the current approach to regulation is too far in favor of established, licensed technologies, instead of emerging uses that a company like Apple might be interested in.

Apple offered the FCC two key suggestions to prepare for next-generation wireless technologies. First, it says the FCC should “increase the fraction of the spectrum that it opens to unlicensed spectrum” (including licensed-unlicensed spectrum sharing), rather than heavily preferring licensed technologies, as is the case today. Second, it suggests that the FCC increase the size of unlicensed bands beyond the “too narrow” 1GHz to 7GHz currently proposed, permitting more space for upcoming devices to aggregate spectrum for massive bandwidth. “Very wide bandwidth operations” would call for “20 gigahertz or more to function optimally,” Apple notes, and could have benefits for “environmental protection, human safety, and manufacturing.”

What is this spectrum good for?

Currently, the frequencies that Apple is commenting on are unused — or “greenfield,” as Apple puts it.  But that doesn’t mean that there aren’t many different scientists and industry researchers who are starting to come up with ideas for those frequencies.  The big advantage to millimeter wave is that it can achieve very high data rates, with much more bandwidth than current cellular networks.

“As Apple says in its filing no one really knows what’s going to happen with that very high spectrum. But since something will someday it’s time to create a mechanism to use it. Maybe not Apple’s preferred unlicensed mechanism,” wireless consultant Steve Crowley told Business Insider in an email. “Regulation takes time, the standardization process takes time, product development takes time. It doesn’t hurt to take the first step.”

The FCC took that first step earlier this year, by filing a notice inviting comment on its proposed rules, which is what Apple responded to. “Now, I realize that some are skeptical that this spectrum can be used productively,” said FCC Chairman Ajit Pai in a statement earlier this year. “But the skeptics have been proven wrong before,” Pai added.

The more spectrum that remains unlicensed, the more likely it is that Apple can experiment in those radio frequencies and build them into its future products. The spectrum used by cellular networks is licensed, for example, but Wi-Fi uses unlicensed spectrum, which enabled Apple to use it in innovative ways, such as for wireless speakers and network syncing.

The FCC also makes money by auctioning licenses to specific bands of spectrum. And if FCC declares that  a new slice of spectrum is unlicensed, that means Apple can access it for free.  The question remains what it could be used for.  One possibility is to use those frequencies for infrastructure to enable “5G” or for fixed broadband access.

“I’d expect first uses of bands 95 GHz and above to be used for 5G small cell backhaul — interconnecting the millimeter wave cells connecting handsets, and fixed users, below 95 GHz,” Crowley told Business Insider. “Currently, bands under study (by whom?) include the so-called W-band (92-114 GHz) and D-band (130-175 GHz),” Crowley added.

Apple’s interest in millimeter wave:

Apple devices currently use Intel and Qualcomm modem chip sets to connect to cellular networks. The referenced FCC filing is only the latest sign that Apple is currently experimenting with millimeter wave technologies, which are expected to be a big part of “5G” networks, even if not used for mobile broadband access (see opinions above and below).

Apple has been testing millimeter wave technology in Cupertino, California since last May on the 28 GHz and 39 GHz, bands that are lower than the ultra-high spectrum Apple commented on.  Earlier this year, Apple applied to make both of its Cupertino, CA headquarters into “innovation zones” which would enable it to run tests more easily without regulatory headaches and applications.

Apple devices access spectrum in numerous licensed and unlicensed frequency bands. For example, iPhones use spectrum ranging from 13 megahertz (contactless payments via Apple Pay) to 5 gigahertz (802.11ac Wi-Fi with MIMO) and support more than 18 different LTE bands,” according to the Apple application, which was also signed by Neumann, the senior Apple engineer.

Last month, Apple pulled a job listing off of its site for a “mmWave IC design engineer,” which suggested it planned to build chips to work on 5G networks. Currently, Apple buys its modems from Qualcomm and Intel.

Experts have said that millimeter wave “might wind up being a kind of middle mile technology, connecting small cells which in turn connect to our phones or big ticket items like buses and home modem.”  Also, “This could be could be part of a wider system that Apple are working on in order to be able to serve more different devices perhaps expanding their own router system with millimeter wave.”

Apple CEO Tim Cook has said that Apple wants to own all of its core technologies— and that likely includes the modem chips that connect Apple devices to networks like those operated by Verizon and AT&T. But even if that’s not part of Apple’s plans, the company clearly wants to understand these extremely high frequencies well.

………………………………………………………………………………………………………

Opinion of Venture Beat:

It’s unlikely that Apple will actually use spectrum in the 95GHz to 3,000GHz range for consumer products anytime soon, but the fact that it’s even considering the future of next-generation and next-next-generation wireless right now is quite interesting — a hint that its planning horizon is closer to a decade or two than a year or two ahead of current trends.

Qualcomm president Cristiano Amon announces that 19 manufacturers and 18 carriers will be using Snapdragon X50 modems to roll out 5G devices to customers in 2019.  Image Credit: Jeremy Horwitz/VentureBeat

Reference:

Apple now has four roads to a 5G iPhone, each challenging

Alan’s comment:

To its credit, Apple is one of very few technology companies to have made no public commitments regarding impending 5G technology.  Perhaps they will wait till all the hype, spin and nonsense fades into the background.

Recent Posts